Evaluation of Deformation Mechanisms at Mineral-Protein Composite Interface Using Steered Molecular Dynamics Simulations

2004 ◽  
Vol 844 ◽  
Author(s):  
Dinesh R. Katti ◽  
Pijush Ghosh ◽  
Kalpana Katti

AbstractIn the area of clay-polymer nanocomposites, recently montmorillonite is extensively used because of its unique characteristics of swelling. In this work, steered molecular dynamics is used to evaluate the mechanical behavior of a new class of nanocomposites, using amino acids to intercalate clay interlayers. Two positively charged amino acids, lysine and arginine, are used here. Our simulation indicates that both the amino acids have preferred orientation inside the clay interlayer. Our simulations also indicate that the clay-amino acid interlayer is about three times stiffer under tension as compared to under compression. On the other hand, dry montmorillonite shows similar stiffness under tension and compression. The fundamental mechanism of deformation during tension and compression is intrinsically different in the amino acid-clay composite. The stress-strain behavior of this clay-amino acid interlayer is predominantly linear until a stress of 1.5 GPa. This study is a first step towards the potential use of biomacromolecules as modifiers in clay nanocomposites.

2019 ◽  
Vol 24 (9) ◽  
pp. 928-938 ◽  
Author(s):  
Luca Palazzolo ◽  
Chiara Paravicini ◽  
Tommaso Laurenzi ◽  
Sara Adobati ◽  
Simona Saporiti ◽  
...  

SLC6A14 (ATB0,+) is a sodium- and chloride-dependent neutral and dibasic amino acid transporter that regulates the distribution of amino acids across cell membranes. The transporter is overexpressed in many human cancers characterized by an increased demand for amino acids; as such, it was recently acknowledged as a novel target for cancer therapy. The knowledge on the molecular mechanism of SLC6A14 transport is still limited, but some elegant studies on related transporters report the involvement of the 12 transmembrane α-helices in the transport mechanism, and describe structural rearrangements mediated by electrostatic interactions with some pivotal gating residues. In the present work, we constructed a SLC6A14 model in outward-facing conformation via homology modeling and used molecular dynamics simulations to predict amino acid residues critical for substrate recognition and translocation. We docked the proteinogenic amino acids and other known substrates in the SLC6A14 binding site to study both gating regions and the exposed residues involved in transport. Interestingly, some of these residues correspond to those previously identified in other LeuT-fold transporters; however, we could also identify a novel relevant residue with such function. For the first time, by combined approaches of molecular docking and molecular dynamics simulations, we highlight the potential role of these residues in neutral amino acid transport. This novel information unravels new aspects of the human SLC6A14 structure–function relationship and may have important outcomes for cancer treatment through the design of novel inhibitors of SLC6A14-mediated transport.


2020 ◽  
Vol 16 (4) ◽  
pp. 451-459 ◽  
Author(s):  
Fortunatus C. Ezebuo ◽  
Ikemefuna C. Uzochukwu

Background: Sulfotransferase family comprises key enzymes involved in drug metabolism. Oxamniquine is a pro-drug converted into its active form by schistosomal sulfotransferase. The conformational dynamics of side-chain amino acid residues at the binding site of schistosomal sulfotransferase towards activation of oxamniquine has not received attention. Objective: The study investigated the conformational dynamics of binding site residues in free and oxamniquine bound schistosomal sulfotransferase systems and their contribution to the mechanism of oxamniquine activation by schistosomal sulfotransferase using molecular dynamics simulations and binding energy calculations. Methods: Schistosomal sulfotransferase was obtained from Protein Data Bank and both the free and oxamniquine bound forms were subjected to molecular dynamics simulations using GROMACS-4.5.5 after modeling it’s missing amino acid residues with SWISS-MODEL. Amino acid residues at its binding site for oxamniquine was determined and used for Principal Component Analysis and calculations of side-chain dihedrals. In addition, binding energy of the oxamniquine bound system was calculated using g_MMPBSA. Results: The results showed that binding site amino acid residues in free and oxamniquine bound sulfotransferase sampled different conformational space involving several rotameric states. Importantly, Phe45, Ile145 and Leu241 generated newly induced conformations, whereas Phe41 exhibited shift in equilibrium of its conformational distribution. In addition, the result showed binding energy of -130.091 ± 8.800 KJ/mol and Phe45 contributed -9.8576 KJ/mol. Conclusion: The results showed that schistosomal sulfotransferase binds oxamniquine by relying on hybrid mechanism of induced fit and conformational selection models. The findings offer new insight into sulfotransferase engineering and design of new drugs that target sulfotransferase.


RSC Advances ◽  
2014 ◽  
Vol 4 (89) ◽  
pp. 48621-48631 ◽  
Author(s):  
Eleanor R. Turpin ◽  
Sam Mulholland ◽  
Andrew M. Teale ◽  
Boyan B. Bonev ◽  
Jonathan D. Hirst

2013 ◽  
Vol 4 ◽  
pp. 429-440 ◽  
Author(s):  
Hlengisizwe Ndlovu ◽  
Alison E Ashcroft ◽  
Sheena E Radford ◽  
Sarah A Harris

We examine how the different steric packing arrangements found in amyloid fibril polymorphs can modulate their mechanical properties using steered molecular dynamics simulations. Our calculations demonstrate that for fibrils containing structural defects, their ability to resist force in a particular direction can be dominated by both the number and molecular details of the defects that are present. The simulations thereby suggest a hierarchy of factors that govern the mechanical resilience of fibrils, and illustrate the general principles that must be considered when quantifying the mechanical properties of amyloid fibres containing defects.


2004 ◽  
Vol 108 (30) ◽  
pp. 10678-10686 ◽  
Author(s):  
Fabrice Gardebien ◽  
Anouk Gaudel-Siri ◽  
Jean-Luc Brédas ◽  
Roberto Lazzaroni

Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 1032-1032
Author(s):  
Tom Van De Berg ◽  
Alice Todaro ◽  
Joyce van Beers ◽  
Kanin Wichapong ◽  
Floor Heubel-Moenen ◽  
...  

Abstract Background Von Willebrand Factor (VWF) is a multimeric protein largely involved in both primary and secondary hemostasis. The diagnosis and classification of von Willebrand Disease (VWD) patients can be challenging. In this poster we explore the genetic defects and their structural consequences in a VWD patient with a disproportionately high bleeding phenotype for her VWD severity. A 31-year old female, initially diagnosed with VWD type 1, presented herself with a bleeding tendency (ISTH-BAT 13) disproportionate to the severity of her VWD with antigen levels of 36%. Additional analysis showed decreased FVIII-binding at 28%. The combination of both quantitative and functional defects of VWF was an indication for further genetic analysis in order to better define the subtype of VWD. Aims Genetic and structural analysis of VWF in a patient with a disproportionally high bleeding phenotype with regard to a mild decrease in VWF antigen. Methods Routine laboratory analysis for VWD was performed. Genetic screening was performed by exome sequencing of hemostasis related genes. VWF mRNA analysis was carried out by RT-PCR and Sanger sequencing. The X-ray structure of furin in complex with a peptide-based inhibitor (PDB ID: 6YD7) was used as a template to construct furin-VWF (759HR(R760S)SKRS764) complex. The derived structures (furin in complex with WT/R760S-VWF) were subjected to molecular dynamics (MD) simulations (200ns) and binding free energy (BFE) calculations by using standard parameters and protocols implemented in AMBER20 program. Results Routine analysis showed PFA-ADP and PFA EPI >300 seconds, VWF:ACT of 37% with a VWF:AG of 36%. Collagen binding and FVIII-binding were 46% and 28% respectively. Genetic analysis of the VWF gene disclosed 2 heterozygous variants of unknown significance (VUS): c.2771 G>A (exon 21, p.Arg924Gln) has a 1-2.5% population prevalence and has been previously described in type 1 and 2N VWD. The other VUS (c.2278 C>A; exon 17) is a novel mutation predicting a major amino acid substitution (p.Arg760Ser) in the D2-domain of VWF. Sequencing of exons 17 and 21 in the patient's VWF mRNA revealed homozygosity for the mutated allele at both mutation sites, indicating that the two variants are in cis and that the 'normal' allele is not expressed at mRNA level. Molecular dynamics simulations of the novel c.2278 C>A mutation (Arg760Ser) predicts a markedly decreased binding of furin to its VWF binding site, possibly decreasing or preventing VWF pro-peptide cleavage. This in turn has been shown to lead to reduced FVIII-binding of VWF. Conclusion Genetic analysis shows one polymorphism (c.2771 G>A) and one variation of unknown significance (c.2278 C>A) in the patient's VWF-gene. The polymorphism is known to be of low pathogenicity. The c. 2278 C>A mutation was not known in any of the mutation databases and is a novel VWF mutation. Both mutations were shown to be present on the same allele. As the wild-type allele was not expressed on mRNA level, all of the patient's VWF protein includes both amino acid substitutions. Modeling and molecular dynamics simulations show a markedly decreased affinity of furin to its cleavage site on the VWF protein due to the Arg760Ser substitution, likely resulting in a persistent pro-peptide binding to the mature VWF protein. Figure 1 Figure 1. Disclosures No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document