mechanical failure
Recently Published Documents


TOTAL DOCUMENTS

573
(FIVE YEARS 134)

H-INDEX

43
(FIVE YEARS 7)

Author(s):  
Bhanu Prasad Bhowmik ◽  
H. G. E. Hentchel ◽  
Itamar Procaccia

Abstract Fatigue caused by cyclic bending of a piece of material, resulting in its mechanical failure, is a phenomenon that had been studied for ages by engineers and physicists alike. In this Letter we study such fatigue in a strip of athermal amorphous solid. On the basis of atomistic simulations we conclude that the crucial quantity to focus on is the accumulated damage. Al- though this quantity exhibits large sample-to-sample fluctuations, its dependence on the loading determines the statistics of the number of cycles to failure. Thus we can provide a scaling theory for the Wo ̈hler plots of mean number of cycles for failure as a function of the loading amplitude.


Author(s):  
Silvia García-Vilana ◽  
David Sánchez-Molina ◽  
Juan Velázquez-Ameijide ◽  
Jordi Llumà

Worldwide, the ocurrence of acute subdural hematomas (ASDHs) in road traffic crashes is a major public health problem. ASDHs are usually produced by loss of structural integrity of one of the cerebral bridging veins (CBVs) linking the parasagittal sinus to the brain. Therefore, to assess the risk of ASDH it is important to know the mechanical conditions to which the CBVs are subjected during a potentially traumatic event (such as a traffic accident or a fall from height). Recently, new studies on CBVs have been published allowing much more accurate prediction of the likelihood of mechanical failure of CBVs. These new data can be used to propose new damage metrics, which make more accurate predictions about the probability of occurrence of ASDH in road crashes. This would allow a better assessement of the effects of passive safety countermeasures and, consequently, to improve vehicle restraint systems. Currently, some widely used damage metrics are based on partially obsolete data and measurements of the mechanical behavior of CBVs that have not been confirmed by subsequent studies. This paper proposes a revision of some existing metrics and constructs a new metric based on more accurate recent data on the mechanical failure of human CBVs.


Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Youjun Ning ◽  
Xinyang Lv ◽  
Zheng Yang

Heterogeneity is an important characteristic that affects the mechanical behavior of rock. In the present work, a statistical rock mesoheterogeneity model based on the Weibull distribution function is introduced into the discontinuous deformation analysis (DDA) method to simulate the mechanical failure of heterogeneous rock, in which the general heterogeneity degree is controlled by a heterogeneity index and the mechanical property of each subblock element is randomly assigned. Brazilian disc and uniaxial compressive rectangular specimens are simulated as examples. Results show that it is more reasonable to consider the heterogeneity of elasticity properties (the elastic modulus and Poisson’s ratio) and strength properties (the tensile strength, cohesion, and friction angle) simultaneously in the heterogeneity model. It is also shown that with a larger heterogeneity index, which means a lower degree of heterogeneity, the reproducibility of the macroscopic response curves of a specimen gets better, while the exact cracking always differs but with less scattered cracks, and the global fracturing failure pattern and mode are weakly influenced by the heterogeneity. Moreover, with the increase in the heterogeneity index, the macroscopic equivalent modulus and strength get larger and approach those of a homogeneous specimen. This work indicates the importance of heterogeneity for rock mechanical behaviors including the macroscopic equivalent response and the fracturing failure. By the subblock DDA method to simulate fracturing realistically, the fracturing failure process of heterogeneous rock can be successfully reproduced, which builds good foundation for the simulation study of heterogeneous rock fracturing in practical problems, e.g., coal and rock fracturing in fluidization mining in the future.


Sign in / Sign up

Export Citation Format

Share Document