Reduction of Selected Metal Oxides in a Thermal Plasma Produced by a Nontransferred ARC Torch

1987 ◽  
Vol 98 ◽  
Author(s):  
Brent A. Detering ◽  
James A. Batdorf ◽  
Chien M. Wai

ABSTRACTPlasma flow field temperatures are determined in a nontransferred arc plasma using emission spectroscopy. This technique is then utilized to identify thermal decomposition and reduction products produced in the plasma plume when metal oxide particles are injected into the plasma arc. The processed particles are then studied using AAS, SEM, EDS and XRD to characterize the chemical changes that have occurred in the particles. A Fourier transform method is used to study changes in particle morphology.

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Jing Zhou ◽  
Li Ding ◽  
Yong Zhu ◽  
Bozhou Wang ◽  
Xiangzhi Li ◽  
...  

AbstractOrganic inner salt structures are ideal backbones for heat-resistant energetic materials and systematic studies towards the thermal properties of energetic organic inner salt structures are crucial to their applications. Herein, we report a comparative thermal research of two energetic organic inner salts with different tetraazapentalene backbones. Detailed thermal decomposition behaviors and kinetics were investigated through differential scanning calorimetry and thermogravimetric analysis (DSC-TG) methods, showing that the thermal stability of the inner salts is higher than most of the traditional heat-resistant energetic materials. Further studies towards the thermal decomposition mechanism were carried out through condensed-phase thermolysis/Fourier-transform infrared (in-situ FTIR) spectroscopy and the combination of differential scanning calorimetry-thermogravimetry-mass spectrometry-Fourier-transform infrared spectroscopy (DSC-TG-MS-FTIR) techniques. The experiment and calculation results prove that the arrangement of the inner salt backbones has great influence on the thermal decompositions of the corresponding energetic materials. The weak N4-N5 bond in “y-” pattern tetraazapentalene backbone lead to early decomposition process and the “z-” pattern tetraazapentalene backbone exhibits more concentrated decomposition behaviors.


1990 ◽  
Vol 92 (4) ◽  
pp. 2244-2247 ◽  
Author(s):  
N. Oliphant ◽  
A. Lee ◽  
P. F. Bernath ◽  
C. R. Brazier

1997 ◽  
Vol 91 (6) ◽  
pp. 1059-1074 ◽  
Author(s):  
By C. V. V. PRASAD ◽  
D. LACOMBE ◽  
K. WALKER ◽  
W. KONG ◽  
P. BERNATH ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document