Defect Control and Defect Engineering of Transition-metal Silicides

2006 ◽  
Vol 980 ◽  
Author(s):  
Haruyuki Inui ◽  
Katsushi Tanaka ◽  
Kyosuke Kishida

AbstractThe microstructure, defect structure and thermoelectric properties of two different semiconducting transition-metal silicides, ReSi1.75 and Ru2Si3 upon alloying with a substitutional element with a valence electron number different from that of the constituent metal have been investigated in order to see if the crystal and defect structures of these silicides and thereby their physical properties can be controlled through defect engineering according to the valence electron counting rule. The Si vacancy concentration and its arrangement can be successfully controlled in ReSi1.75 while the relative magnitude of the metal and silicon subcell dimensions in the chimney-ladder structures can be successfully controlled in Ru2Si3. As a result, the improvement in the thermoelectric properties and the p- to n-type conduction transition are successfully achieved respectively for these semiconducting transition-metal silicides.

2007 ◽  
Vol 561-565 ◽  
pp. 443-446 ◽  
Author(s):  
Haruyuki Inui ◽  
Katsushi Tanaka ◽  
Kyosuke Kishida ◽  
S. Harada

The changes in microstructure and defect structure of two different semiconducting transition-metal silicides, ReSi1.75 and Ru2Si3 with ternary alloying of substitutional elements with a valence electron number different from that of the constituent metal have been investigated in order to see if the crystal and defect structures of these silicides and thereby their physical properties can be controlled through defect engineering according to the valence electron counting rule. The Si vacancy concentration and its arrangement can be successfully controlled in ReSi1.75 while the relative magnitude of the metal and silicon subcell dimensions in the chimney-ladder structures can be successfully controlled in Ru2Si3.


Author(s):  
Yanxia Wang ◽  
Xue Jiang ◽  
Yi Wang ◽  
Jijun Zhao

Exploring two-dimensional (2D) ferromagnetic materials with intrinsic Dirac half-metallicity is crucial for the development of next-generation spintronic devices. Based on first-principles calculations, here we propose a simple valence electron-counting rule...


2010 ◽  
Vol 40 (5) ◽  
pp. 597-600 ◽  
Author(s):  
R. Viennois ◽  
X. Tao ◽  
P. Jund ◽  
J.-C. Tedenac

2006 ◽  
Vol 980 ◽  
Author(s):  
Akira Ishida ◽  
Norihiko L. Okamoto ◽  
Kyosuke Kishida ◽  
Katsushi Tanaka ◽  
Haruyuki Inui

AbstractThe phase relationship of Re-alloyed Ru2Si3 and the variations of the crystal structures and thermoelectric properties of the Ru1-xRexSiy chimney-ladder phases have been studied as a function of the Re concentration. The Ru1-xRexSiy chimney-ladder phases are formed in a wide compositional range. Compositional formula of the chimney-ladder phases are determined to be Ru1-xRexSi1.5386+0.1783x (0.14 ≤ x ≤ 0.76), which are systematically deviated from the idealized composition conforming the valence electron counting rule: VEC=14. Measurements of thermoelectric properties of single crystals with different compositions reveals that the chimney-ladder phases exhibit n-type semiconducting behavior at low Re concentrations and p-type semiconducting behavior at high Re concentrations. These results suggests that the VEC=14 rule can be used for predicting the semiconducting behavior of the chimney-ladder phases through the adjustment of VEC values by substituting elements, producing p-type semiconductors for VEC<14 and n-type for VEC>14, with the carrier concentration related to the deviation from VEC=14.


2013 ◽  
Vol 15 (10) ◽  
pp. 105010 ◽  
Author(s):  
Ingo Opahle ◽  
Alessandro Parma ◽  
Eunan J McEniry ◽  
Ralf Drautz ◽  
Georg K H Madsen

Nanoscale ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 3327-3345
Author(s):  
Xuecheng Yan ◽  
Linzhou Zhuang ◽  
Zhonghua Zhu ◽  
Xiangdong Yao

This review highlights recent advancements in defect engineering and characterization of both metal-free carbons and transition metal-based electrocatalysts.


Sign in / Sign up

Export Citation Format

Share Document