51V and 133Cs MAS NMR Investigation of Crystalline Trivanadate and Hexavanadate Phases.

2006 ◽  
Vol 984 ◽  
Author(s):  
Olivier Durupthy ◽  
Jocelyne Maquet ◽  
Nathalie Steunou ◽  
Christian Bonhomme ◽  
Jacques Livage

AbstractA complete solid state NMR characterization of the vanadium oxides Cs[V3O8] and Cs2[V6O16].0.7H2O is proposed. We used 51V and 133Cs MAS NMR to investigate the local environment of cesium and vanadium nuclei and 2D 1H- 133Cs CP MAS HETCOR experiments to explore the connectivities between cesium ions and water molecules in the interlamellar space.

2020 ◽  
Author(s):  
Marvin Grüne ◽  
Robert Luxenhofer ◽  
Dinu Iuga ◽  
Steven P. Brown ◽  
Ann-Christin Pöppler

We present <sup>14</sup>N-<sup>1</sup>H HMQC MAS NMR experiments in the solid state as a promising tool to study amorphous formulations. Poly(2-oxazoline) based polymer micelles loaded with different amounts of the cancer drug paclitaxel serve to highlight the possibilities offered by these experiments: While the very similar <sup>15</sup>N chemical shifts hamper a solid-state NMR characterization based on this nucleus, <sup>14</sup>N is a very versatile alternative. <sup>14</sup>N-<sup>1</sup>H HMQC experiments yield well-separated signals, which are spread over a large ppm range, provide information on the symmetry of the nitrogen environment and probe <sup>14</sup>N-<sup>1</sup>H through-space proximities.


Sign in / Sign up

Export Citation Format

Share Document