scholarly journals Deep levels in n-type Schottky and p+-n homojunction GaN diodes

2000 ◽  
Vol 5 (S1) ◽  
pp. 922-928
Author(s):  
A. Hierro ◽  
D. Kwon ◽  
S. A. Ringel ◽  
M. Hansen ◽  
U. K. Mishra ◽  
...  

The deep level spectra in both p+-n homojunction and n-type Schottky GaN diodes are studied by deep level transient spectroscopy (DLTS) in order to compare the role of the junction configuration on the defects found within the n-GaN layer. Both majority and minority carrier DLTS measurements are performed on the diodes allowing the observation of both electron and hole traps in n-GaN. An electron level at Ec−Et=0.58 and 0.62 V is observed in the p+-n and Schottky diodes, respectively, with a concentration of ∼3−4×1014 cm−3 and a capture cross section of ∼1−5×10−15 cm2. The similar Arrhenius behavior indicates that both emissions are related to the same defect. The shift in activation energy is correlated to the electric field enhanced-emission in the p+-n diode, where the junction barrier is much larger. The p+-n diode configuration allows the observation of a hole trap at Et−Ev=0.87 eV in the n-GaN which is very likely related to the yellow luminescence band.

1999 ◽  
Vol 595 ◽  
Author(s):  
A. Hierro ◽  
D. Kwon ◽  
S. A. Ringel ◽  
M. Hansen ◽  
U. K. Mishra ◽  
...  

AbstractThe deep level spectra in both p+-n homojunction and n-type Schottky GaN diodes are studied by deep level transient spectroscopy (DLTS) in order to compare the role of the junction configuration on the defects found within the n-GaN layer. Both majority and minority carrier DLTS measurements are performed on the diodes allowing the observation of both electron and hole traps in n-GaN. An electron level at Ec-Et=0.58 and 0.62 V is observed in the p+-n and Schottky diodes, respectively, with a concentration of ∼3-4×1014cm−3 and a capture cross section of ∼1-5×10−15cm2. The similar Arrhenius behavior indicates that both emissions are related to the same defect. The shift in activation energy is correlated to the electric field enhanced-emission in the p+-n diode, where the junction barrier is much larger. The p+-n diode configuration allows the observation of a hole trap at Et-Ev=0.87 eV in the n-GaN which is very likely related to the yellow luminescence band.


2005 ◽  
Vol 483-485 ◽  
pp. 425-428 ◽  
Author(s):  
R.R Ciechonski ◽  
Samuele Porro ◽  
Mikael Syväjärvi ◽  
Rositza Yakimova

Specific on-resistance Ron estimated from current density-voltage characteristics of Schottky diodes on thick layers exhibits variations from tens of mW.cm2 to tens of W.cm2 for different doping levels. In order to understand the occurrence of high on-state resistance, Schottky barrier heights were first estimated for both forward and reverse bias with the application of thermionic emission theory and were in agreement with a literature reported values. Decrease in mobility with the temperature was observed and its dependencies of T–1.3 and T–2.0 for moderately doped and low doped samples respectively were estimated. From deep level measurements by Minority Carrier Transient Spectroscopy, an influence of shallow boron related levels and D-center on dependence of on-state resistance was observed, being more pronounced in low doped samples. Similar tendency was observed in depth profiling of Ron. This suggests a major role of boron in a compensation mechanism thus resulting in high Ron.


2020 ◽  
Vol 1004 ◽  
pp. 331-336
Author(s):  
Giovanni Alfieri ◽  
Lukas Kranz ◽  
Andrei Mihaila

SiC has currently attracted the interest of the scientific community for qubit applications. Despite the importance given to the properties of color centers in high-purity semi-insulating SiC, little is known on the electronic properties of defects in this material. In our study, we investigated the presence of electrically active levels in vanadium-doped substrates. Current mode deep level transient spectroscopy, carried out in the dark and under illumination, together with 1-D simulations showed the presence of two electrically active levels, one associated to a majority carrier trap and the other one to a minority carrier trap. The nature of the detected defects has been discussed in the light of the characterization performed on low-energy electron irradiated substrates and previous results found in the literature.


2015 ◽  
Vol 242 ◽  
pp. 163-168 ◽  
Author(s):  
Ilia L. Kolevatov ◽  
Frank Herklotz ◽  
Viktor Bobal ◽  
Bengt Gunnar Svensson ◽  
Edouard V. Monakhov

The evolution of irradiation-induced and hydrogen-related defects in n-type silicon in the temperature range 0 – 300 °C has been studied by deep level transient spectroscopy (DLTS) and minority carrier transient spectroscopy (MCTS). Implantation of a box-like profile of hydrogen was performed into the depletion region of a Schottky diode to undertake the DLTS and MCTS measurements. Proportionality between the formation of two hydrogen-related deep states and a decrease of the vacancy-oxygen center concentration was found together with the appearance of new hydrogen-related energy levels.


2008 ◽  
Vol 600-603 ◽  
pp. 1297-1300 ◽  
Author(s):  
Yutaka Tokuda ◽  
Youichi Matsuoka ◽  
Hiroyuki Ueda ◽  
Osamu Ishiguro ◽  
Narumasa Soejima ◽  
...  

Minority- and majority-carrier traps were studied in GaN pn junctions grown homoepitaxially by MOCVD on n+ GaN substrates. Two majority-carrier traps (MA1,MA2) and three minority-carrier traps (MI1, MI2, MI3) were detected by deep-level transient spectroscopy. MA1 and MA2 are electron traps commonly observed in n GaN on n+ GaN and sapphire substrates. No dislocation-related traps were observed in n GaN on n+ GaN. Among five traps in GaN pn on GaN, MI3 is the main trap with the concentration of 2.5x1015 cm-3.


2013 ◽  
Vol 205-206 ◽  
pp. 181-190 ◽  
Author(s):  
Vladimir P. Markevich ◽  
Anthony R. Peaker ◽  
Bruce Hamilton ◽  
S.B. Lastovskii ◽  
Leonid I. Murin ◽  
...  

The data obtained recently from combined deep-level-transient spectroscopy (DLTS), local vibrational mode (LVM) spectroscopy and ab-initio modeling studies on structure, electronic properties, local vibrational modes, reconfiguration and diffusion paths and barriers for trivacancy (V3) and trivacancy-oxygen (V3O) defects in silicon are summarized. New experimental results on the introduction rates of the divacancy (V2) and trivacancy upon 4 MeV electron irradiation and on the transformation of V3 from the fourfold coordinated configuration to the (110) planar one upon minority carrier injection are reported. Possible mechanisms of the transformation are considered and discussed.


Sign in / Sign up

Export Citation Format

Share Document