schottky diode
Recently Published Documents


TOTAL DOCUMENTS

2015
(FIVE YEARS 370)

H-INDEX

52
(FIVE YEARS 8)

Author(s):  
A Kanni Raj

Abstract: Polyaniline nanoparticles is synthesized by chemical oxidation of aniline by copper sulphate. Chemical reduction of silver nitrate by sodium citrate yileds silver nanoparticles. Both aforesaid nanomaterials are mixded with polyvinyl alcohol to get nanocomposite gel. Nanoparticles are characterized by ultraviolet-visible absorption spectroscopy. Schottky diode is made by applying nanocomposite with copper wire on one side of aluminium foil and on other side attaching copper wire for another electrical contact. Current-voltage electrical characterization is analyzed by making simple circuit encompassing polyaniline/silver nanocomposite diode. Keywords: Nanoelecttronics, Nanoparticles, Polyaniline, Nanocomposite, Schottky-diode


2021 ◽  
Author(s):  
Mayyada Muttar Fdhala ◽  
◽  
Ayser A. Hemed ◽  
Ramiz A. Al-Ansari ◽  
Raad M. Al-Haddad ◽  
...  

Schottky Diode (SD) Al/a-Se/Au as a solar cell (SC) was prepared by thermal evaporation technique (TET) on glass thin slide as a substrate under vacuum (10!" mbar). The Schottky Barrier (SB) have been prepared with different thicknesses (300, 500 and 700) nm in room temperature and (343) K annealing temperature. The current-voltage (IV) physical properties of the SB have got rectification properties and approved as a SC. This cell is developed with increased annealing temperatures and thickness of layers of SD. Experience under lighting shows good efficiency (η), which increased linearly with both thickness and annealing temperatures from (0.0318% to 4.064%) and from (0.0318% to 0.4778%). This is for three values of lighting power density (160, 230, 400) 𝑚𝑊/𝑐𝑚# in which the behave is similar. The best efficiency obtained in this work was (15.286)% at a power density of 400 𝑚𝑊/𝑐𝑚# , with thickness 700nm and 343K annealing temperature. Also (12.407)% at 230 𝑚𝑊/𝑐𝑚#, with thickness 500nm for the same annealing temperature.


Author(s):  
Muhammad Hafiz bin Abu Bakar ◽  
Aboulaye Traore ◽  
Junjie Guo ◽  
Toshiharu MAKINO ◽  
Masahiko Ogura ◽  
...  

Abstract Diamond solid-state devices are very attractive to electrically control the charge state of Nitrogen-Vacancy (NV) centers. In this work, Vertical p-type Diamond Schottky Diode (VDSDs) is introduced as a platform to electrically control the interconversion between the neutral charge NV (NV0) and negatively charged NV (NV-) centers. The photoluminescence (PL) of NV centers generated by ion-implantation in VDSDs shows the increase of NV- Zero Phonon Line (ZPL) and phonon sideband (PBS) intensities with the reverse voltage, whereas the NV0 ZPL intensity decreases. Thus, NV centers embedded into VDSDs are converted into NV- under reverse bias voltage. Moreover, the optically detected magnetic resonance (ODMR) of NV- exhibits an increase in the ODMR contrast with the reverse bias voltage and splitting of the resonance dips. Since no magnetic is applied, such a dip splitting in ODMR spectrum is ascribed the Stark effect induced by the interaction of NV- with the electric field existing within the depletion region of VDSDs.


Author(s):  
Dmitriy Medvedev ◽  
Aleksey Malahanov

The results of modeling of the high-voltage silicon Schottky diode in the device-technological design system Synopsys Sentaurus TCAD was presented.


2021 ◽  
Author(s):  
SUNGWON CHOI ◽  
Jongtae Ahn ◽  
Il-Ho Ahn ◽  
Do Kyung Hwang ◽  
Min-Chul Park

2021 ◽  
Vol 11 (2) ◽  
pp. 328-339
Author(s):  
Ahmet Kursat BILGILI ◽  
Rabia ÇAĞATAY ◽  
Mustafa OZTURK ◽  
Metin ÖZER
Keyword(s):  

Author(s):  
Fuping Huang ◽  
Chunshuang Chu ◽  
Xingyu Jia ◽  
Kangkai Tian ◽  
Yonghui Zhang ◽  
...  

Abstract In this work, a hybrid trench MOS barrier Schottky diode (TMBS) structure is proposed to improve both the forward current density and the breakdown voltage (BV) by using TCAD simulation tools. The hybrid structure means that the conventional TMBS rectifier is combined with a p-NiO/n-GaN diode. This can modulate the lateral energy bands by removing the conduction band barriers for electrons. Thus, the improved current spreading effect and the better conductivity modulation can be obtained, leading to the increased current density. Meanwhile, the embedded p-type NiO layer can also help to reduce the electric field at Schottky contact interface and the edge of anode contact/p-NiO layer interface. Thus, the breakdown voltage can be improved remarkably. Moreover, a detailed optimization strategy for the hybrid TMBS is also analyzed by varying the p-NiO layer thickness (TNiO) and the lengths of the anode electrode that is covered on the p-NiO layer (LA).


Author(s):  
Qiang Liu ◽  
Yong Fang ◽  
Cong Mou ◽  
Jianlong Liu ◽  
Baoqing Zeng
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document