scholarly journals Writing-to-learn in introductory materials science and engineering

Author(s):  
L. Marks ◽  
H. Lu ◽  
T. Chambers ◽  
S. Finkenstaedt-Quinn ◽  
R. S. Goldman

AbstractWe examine the impact of writing-to-learn (WTL) on promoting conceptual understanding of introductory materials science and engineering, including crystal structures, stress–strain behavior, phase diagrams, and corrosion. We use an analysis of writing products in comparison with pre/post concept-inventory-style assessments. For all topics, statistically significant improvements between draft and revision scores are apparent. For the stress–strain and phase diagram WTL assignments that require synthesis of qualitative data into quantitative formats, while emphasizing microstructure-properties correlations, the highest WTL effect sizes and medium-to-high gains on corresponding assessments are observed. We present these findings and suggest strategies for future WTL design and implementation. Graphic abstract

2007 ◽  
Vol 1046 ◽  
Author(s):  
Christine Caragianis-Broadbridge ◽  
Heather Edgecumbe ◽  
Greg Osenko ◽  
Ann Lehman ◽  
Lisa Alter ◽  
...  

AbstractThe intent of the CRISP education and outreach effort is to use materials science as a vehicle for enhancing the scientific literacy and knowledge of kindergarten through post-graduate level students. A challenging part of our mission has been inspiring students to take the next step and consider further study (or a career) in the field of Materials Science and Engineering (MSE). The CRISP educational programs were developed through a partnership between Yale University, Southern Connecticut State University and the urban school district of New Haven, CT. An overview of the methods and results of both formal and informal educational program components will be presented for years one and two of the CRISP MRSEC. This paper will focus on two CRISP programs: 1) MRSEC Initiative for Multidisciplinary Education & Research (MIMER) and 2) “Exploring Materials Science” mobile kits. The evaluation data indicates that the approach used in developing these educational programs is important. Specifically, the impact of these programs is influenced by the students' ability to relate the acquired knowledge to real life applications and technologies. In particular, emphasizing career opportunities rather than just presenting content-based programs is a key element to increasing interest towards further study in Materials Science and Engineering.


MRS Advances ◽  
2018 ◽  
Vol 4 (19) ◽  
pp. 1087-1100
Author(s):  
C. Pomales-García ◽  
Z.A. Reyes-Rivera ◽  
J. Mercado-Colón ◽  
A.M. Padovani ◽  
O.M. Suarez ◽  
...  

AbstractThis research evidences the impact of Materials Science and Engineering Clubs as an outreach effort to expand the education and training required for a competitive Nanotechnology workforce beyond traditional STEM areas. An engineering perception questionnaire was implemented as a pre-test/post-test to track student perceptions and goals throughout the academic year to identify trends amongst gender and school level groups. Findings (107 students) show a perceived increase in student knowledge and interest for different fields of study, based on pre/post-test responses, with differences amongst gender and school level groups (middle school and high school). Also, significant differences in students’ aspirations for higher education degree were found among school level and gender. Results show that over 20% of participants increased their aspirations to higher education degrees and their interests in pursuing STEM degrees at end of the academic year. Specific findings on engineering perceptions and perceived level of knowledge and interest in science, engineering, materials, and nanotechnology as a result of club participation and student’s educational aspirations, expectations and future study plans are discussed along with implications for future STEM education.


2000 ◽  
Vol 632 ◽  
Author(s):  
Eric Werwa

ABSTRACTA review of the educational literature on naive concepts about principles of chemistry and physics and surveys of science museum visitors reveal that people of all ages have robust alternative notions about the nature of atoms, matter, and bonding that persist despite formal science education experiences. Some confusion arises from the profound differences in the way that scientists and the lay public use terms such as materials, metals, liquids, models, function, matter, and bonding. Many models that eloquently articulate arrangements of atoms and molecules to informed scientists are not widely understood by lay people and may promote naive notions among the public. Shifts from one type of atomic model to another and changes in size scales are particularly confusing to learners. People's abilities to describe and understand the properties of materials are largely based on tangible experiences, and much of what students learn in school does not help them interpret their encounters with materials and phenomena in everyday life. Identification of these challenges will help educators better convey the principles of materials science and engineering to students, and will be particularly beneficial in the design of the Materials MicroWorld traveling museum exhibit.


2021 ◽  
Vol 22 (9) ◽  
pp. 4543
Author(s):  
Xuan-Hung Pham ◽  
Seung-min Park ◽  
Bong-Hyun Jun

Nano/micro particles are considered to be the most valuable and important functional materials in the field of materials science and engineering [...]


MRS Bulletin ◽  
1992 ◽  
Vol 17 (9) ◽  
pp. 18-21 ◽  
Author(s):  
R. Abbaschian

Materials science and engineering (MSE), as a field as well as a discipline, has expanded greatly in recent years and will continue to do so, most likely at an even faster pace. It is now well-accepted that materials are crucial to the national defense, to the quality of life, and to the economic security and competitiveness of the nation. Mankind has recognized the importance of manmade materials to the quality of life for many centuries. In many cases, the security and defense of tribes and nations have substantially depended on the availability of materials. It is not surprising that historical periods have been named after materials—the Bronze Age, the Iron Age, etc. The major requirements from materials in those days were their properties and performance. Today, in this age of advanced materials, the importance of materials to defense and quality of life has not changed. However, the critical role of materials has taken an additional dimension: it has become essential to enhancing industrial competitiveness.The knowledge base within MSE has also expanded vastly throughout these years and continues to do so at an increasing rate. We are constantly gaining a deeper understanding of the fundamental nature of materials, developing new ways to produce and shape them for applications extending from automobiles to supersonic airplanes, optoelectronic devices to supercomputers, hip implants to intraocular lenses, or from household appliances to gigantic structures. We are also learning that, in many of these applications, we need to depend on the combinations or composites of different classes of materials (metals, ceramic, polymers, and electronic materials) to enhance their properties.


Sign in / Sign up

Export Citation Format

Share Document