scholarly journals The Critical Radius in Sampling-based Motion Planning

Author(s):  
Kiril Solovey ◽  
Michal Kleinbort
2019 ◽  
Vol 39 (2-3) ◽  
pp. 266-285 ◽  
Author(s):  
Kiril Solovey ◽  
Michal Kleinbort

We develop a new analysis of sampling-based motion planning in Euclidean space with uniform random sampling, which significantly improves upon the celebrated result of Karaman and Frazzoli and subsequent work. In particular, we prove the existence of a critical connection radius proportional to [Formula: see text] for n samples and d dimensions: below this value the planner is guaranteed to fail (similarly shown by Karaman and Frazzoli). More importantly, for larger radius values the planner is asymptotically (near-)optimal. Furthermore, our analysis yields an explicit lower bound of [Formula: see text] on the probability of success. A practical implication of our work is that asymptotic (near-)optimality is achieved when each sample is connected to only [Formula: see text] neighbors. This is in stark contrast to previous work that requires [Formula: see text] connections, which are induced by a radius of order [Formula: see text]. Our analysis applies to the probabilistic roadmap method (PRM), as well as a variety of “PRM-based” planners, including RRG, FMT*, and BTT. Continuum percolation plays an important role in our proofs. Lastly, we develop similar theory for all the aforementioned planners when constructed with deterministic samples, which are then sparsified in a randomized fashion. We believe that this new model, and its analysis, is interesting in its own right.


2006 ◽  
Author(s):  
Jonathan Vaughan ◽  
Steven Jax ◽  
David A. Rosenbaum
Keyword(s):  

Author(s):  
Ioan Sucan ◽  
Sachin Chitta
Keyword(s):  


1995 ◽  
Author(s):  
Sumanta Guha ◽  
Rama D. Puvvada ◽  
Deepti Suri ◽  
Ichiro Suzuki

Sign in / Sign up

Export Citation Format

Share Document