probabilistic roadmap
Recently Published Documents


TOTAL DOCUMENTS

102
(FIVE YEARS 22)

H-INDEX

19
(FIVE YEARS 2)

Author(s):  
Jacqueline Jermyn

Abstract: Sampling-based path planners develop paths for robots to journey to their destinations. The two main types of sampling-based techniques are the probabilistic roadmap (PRM) and the Rapidly Exploring Random Tree (RRT). PRMs are multi-query methods that construct roadmaps to find routes, while RRTs are single-query techniques that grow search trees to find paths. This investigation evaluated the effectiveness of the PRM, the RRT, and the novel Hybrid RRT-PRM methods. This novel path planner was developed to improve the performance of the RRT and PRM techniques. It is a fusion of the RRT and PRM methods, and its goal is to reduce the path length. Experiments were conducted to evaluate the effectiveness of these path planners. The performance metrics included the path length, runtime, number of nodes in the path, number of nodes in the search tree or roadmap, and the number of iterations required to obtain the path. Results showed that the Hybrid RRT-PRM method was more effective than the PRM and RRT techniques because of the shorter path length. This new technique searched for a path in the convex hull region, which is a subset of the search area near to the start and end locations. The roadmap for the Hybrid RRT-PRM could also be re-used to find pathways for other sets of initial and final positions. Keywords: Path Planning, Sampling-based algorithms, search tree, roadmap, single-query planners, multi-query planners, Rapidly Exploring Random Tree (RRT), Probabilistic Roadmap (PRM), Hybrid RRT-PRM


2021 ◽  
Vol 72 ◽  
pp. 102196
Author(s):  
Gang Chen ◽  
Ning Luo ◽  
Dan Liu ◽  
Zhihui Zhao ◽  
Changchun Liang

2021 ◽  
Vol 11 (16) ◽  
pp. 7599
Author(s):  
Qiang Cheng ◽  
Wei Zhang ◽  
Hongshuai Liu ◽  
Ying Zhang ◽  
Lina Hao

Autonomous, flexible, and human–robot collaboration are the key features of the next-generation robot. Such unstructured and dynamic environments bring great challenges in online adaptive path planning. The robots have to avoid dynamic obstacles and follow the original task path as much as possible. A robust and efficient online path planning method is required accordingly. A method based on the Gaussian Mixture Model (GMM), Gaussian Mixture Regression (GMR), and the Probabilistic Roadmap (PRM) is proposed to overcome the above difficulties. During the offline stage, the GMM was used to model teaching data, and it can represent the offline-demonstrated motion and constraints. The optimal solution was encoded in the mean value, while the environmental constraints were encoded in the variance value. The GMR generated a smooth path with variance as the resample space according to the GMM of the teaching data. This representation isolated the old environment model with the novel obstacle. During the online stage, a Modified Probabilistic Roadmap (MPRM) was used to plan the motion locally. Because the GMM provides the distribution of all the feasible motion, the sampling space of the MPRM was generated by the variable density resampling method, and then, the roadmap was constructed according to the Euclidean and Probability Distance (EPD). The Dijkstra algorithm was used to search for the feasible path between the starting point and the target point. Finally, shortcut pruning and B-spline interpolation were used to generate a smooth path. During the simulation experiment, two obstacles were added to the recurrent scene to indicate the difference from the teaching scene, and the GMM/GMR-MPRM algorithm was used for path planning. The result showed that it can still plan a feasible path when the recurrent scene is not the same as the teaching scene. Finally, the effectiveness of the algorithm was verified on the IRB1200 robot experiment platform.


2021 ◽  
Vol 11 (12) ◽  
pp. 5754
Author(s):  
Xue Zhao ◽  
Ye He ◽  
Xiaoan Chen ◽  
Zhi Liu

With the development of the global economy, the demand for manufacturing is increasing. Accordingly, human–robot collaborative assembly has become a research hotspot. This paper aims to solve the efficiency problems inherent in traditional human-machine collaboration. Based on eye–hand and finite state machines, a collaborative assembly method is proposed. The method determines the human’s intention by collecting posture and eye data, which can control a robot to grasp an object, move it, and perform co-assembly. The robot’s automatic path planning is based on a probabilistic roadmap planner. Virtual reality tests show that the proposed method is more efficient than traditional methods.


2021 ◽  
Author(s):  
zhao xue ◽  
CHEN Xiaoan ◽  
HE Ye ◽  
Hongli Cao ◽  
Tian Shengli

Abstract Teleoperation system has attracted a lot of attention because of its advantages in dangerous or unknown environment. It is very difficult to develop an operating system that can complete complex tasks in an completely autonomous. This paper proposes a robot arm control strategy based on gesture and visual perception. The strategy combines the advantages of humans and robots to obtain a convenient and flexible interaction model. The hand data were obtained by Leap-Motion. Then a neural network algorithm was used to classify the nine gestures used for robot control by a finite state machine. The control mode switched between indicative control and mapping control. The robot acquired a autonomous grasp ability by incorporating YOLO 6D, depth data, and a probabilistic roadmap planner algorithm. The robot completed most of the trajectory independently, and a few flexible trajectories required a user to make mapping actions. This interactive mode reduces the burden of the user to a certain extent, that makes up for the shortcomings of traditional teleoperation.


2021 ◽  
Vol 34 (1) ◽  
Author(s):  
Yingfeng Zhao ◽  
Jianhua Liu ◽  
Jiangtao Ma ◽  
Linlin Wu

AbstractCurrent studies on cable harness layouts have mainly focused on cable harness route planning. However, the topological structure of a cable harness is also extremely complex, and the branch structure of the cable harness can affect the route of the cable harness layout. The topological structure design of the cable harness is a key to such a layout. In this paper, a novel multi-branch cable harness layout design method is presented, which unites the probabilistic roadmap method (PRM) and the genetic algorithm. First, the engineering constraints of the cable harness layout are presented. An obstacle-based PRM used to construct non-interference and near to the surface roadmap is then described. In addition, a new genetic algorithm is proposed, and the algorithm structure of which is redesigned. In addition, the operation probability formula related to fitness is proposed to promote the efficiency of the branch structure design of the cable harness. A prototype system of a cable harness layout design was developed based on the method described in this study, and the method is applied to two scenarios to verify that a quality cable harness layout can be efficiently obtained using the proposed method. In summary, the cable harness layout design method described in this study can be used to quickly design a reasonable topological structure of a cable harness and to search for the corresponding routes of such a harness.


2021 ◽  
pp. 1-10
Author(s):  
M. G Mohanan ◽  
◽  
Ambuja Salgaonkar ◽  

A collision free path to a target location in a random farm is computed by employing a probabilistic roadmap (PRM) that can handle static and dynamic obstacles. The location of ripened mushrooms is an input obtained by image processing. A mushroom harvesting robot is discussed that employs inverse kinematics (IK) at the target location to compute the state of a robotic hand for holding a ripened mushroom and plucking it. Kinematic model of a two-finger dexterous hand with 3 degrees of freedom for plucking mushrooms was developed using the Denavit-Hartenberg method. Unlike previous research in mushroom harvesting, mushrooms are not planted in a grid or some pattern, but are randomly distributed. No human intervention is required at any stage of harvesting.


2021 ◽  
Vol 7 (1) ◽  
pp. 11252-11270
Author(s):  
Emerson V. A. Dias ◽  
Catarina G. B. P. Silva ◽  
Josias G. Batista ◽  
Geraldo L. B. Ramalho ◽  
Jonatha R. Costa ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document