Excitation Pulse Deconvolution in Luminescence Lifetime Analysis for Oxygen Measurements In Vivo¶

2007 ◽  
Vol 76 (1) ◽  
pp. 12-21
Author(s):  
Egbert G. Mik ◽  
Cornelis Donkersloot ◽  
Nicolaas J. H. Raat ◽  
Can Ince
Nanomaterials ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 3185
Author(s):  
Dina Farrakhova ◽  
Igor Romanishkin ◽  
Yuliya Maklygina ◽  
Lina Bezdetnaya ◽  
Victor Loschenov

Spectroscopic approach with fluorescence time resolution allows one to determine the state of a brain tumor and its microenvironment via changes in the fluorescent dye’s fluorescence lifetime. Indocyanine green (ICG) is an acknowledged infra-red fluorescent dye that self-assembles into stable aggregate forms (ICG NPs). ICG NPs aggregates have a tendency to accumulate in the tumor with a maximum accumulation at 24 h after systemic administration, enabling extended intraoperative diagnostic. Fluorescence lifetime analysis of ICG and ICG NPs demonstrates different values for ICG monomers and H-aggregates, indicating promising suitability for fluorescent diagnostics of brain tumors due to their affinity to tumor cells and stability in biological tissue.


2007 ◽  
Vol 6 (5) ◽  
pp. 7290.2007.00030 ◽  
Author(s):  
Abedelnasser Abulrob ◽  
Eric Brunette ◽  
Jacqueline Slinn ◽  
Ewa Baumann ◽  
Danica Stanimirovic

Fluorescence lifetime is an intrinsic parameter of the fluorescent probe, independent of the probe concentration but sensitive to changes in the surrounding microenvironment. Therefore, fluorescence lifetime imaging could potentially be applied to in vivo diagnostic assessment of changes in the tissue microenvironment caused by disease, such as ischemia. The aim of this study was to evaluate the utility of noninvasive fluorescence lifetime imaging in distinguishing between normal and ischemic kidney tissue in vivo. Mice were subjected to 60-minute unilateral kidney ischemia followed by 6-hour reperfusion. Animals were then injected with the near-infrared fluorescence probe Cy5.5 or saline and imaged using a time-domain small-animal optical imaging system. Both fluorescence intensity and lifetime were acquired. The fluorescence intensity of Cy5.5 was clearly reduced in the ischemic compared with the contralateral kidney, and the fluorescence lifetime of Cy5.5 was not detected in the ischemic kidney, suggesting reduced kidney clearance. Interestingly, the two-component lifetime analysis of endogenous fluorescence at 700 nm distinguished renal ischemia in vivo without the need for Cy5.5 injection for contrast enhancement. The average fluorescence lifetime of endogenous tissue fluorophores was a sensitive indicator of kidney ischemia ex vivo. The study suggests that fluorescence lifetime analysis of endogenous tissue fluorophores could be used to discriminate ischemic or necrotic tissues by noninvasive in vivo or ex vivo organ imaging.


Author(s):  
Sez-Jade Chen ◽  
Nattawut Sinsuebphon ◽  
Margarida Barroso ◽  
Xavier Intes ◽  
Xavier Michalet

Tomography ◽  
2021 ◽  
Vol 7 (3) ◽  
pp. 466-476
Author(s):  
Tyler Blazey ◽  
Galen D Reed ◽  
Joel R Garbow ◽  
Cornelius von Morze

Although hyperpolarization (HP) greatly increases the sensitivity of 13C MR, the usefulness of HP in vivo is limited by the short lifetime of HP agents. To address this limitation, we developed an echo-planar (EPI) sequence with spectral-spatial radiofrequency (SSRF) pulses for fast and efficient metabolite-specific imaging of HP [1-13C]pyruvate and [1-13C]lactate at 4.7 T. The spatial and spectral selectivity of each SSRF pulse was verified using simulations and phantom testing. EPI and CSI imaging of the rat abdomen were compared in the same rat after injecting HP [1-13C]pyruvate. A procedure was also developed to automatically set the SSRF excitation pulse frequencies based on real-time scanner feedback. The most significant results of this study are the demonstration that a greater spatial and temporal resolution is attainable by metabolite-specific EPI as compared with CSI, and the enhanced lifetime of the HP signal in EPI, which is attributable to the independent flip angle control between metabolites. Real-time center frequency adjustment was also highly effective for minimizing off-resonance effects. To the best of our knowledge, this is the first demonstration of metabolite-specific HP 13C EPI at 4.7 T. In conclusion, metabolite-specific EPI using SSRF pulses is an effective way to image HP [1-13C]pyruvate and [1-13C]lactate at 4.7 T.


2013 ◽  
Vol 40 (6Part15) ◽  
pp. 271-271
Author(s):  
D Campos ◽  
A Torres ◽  
M Lakshman ◽  
M Kissick ◽  
R Kimple ◽  
...  

2021 ◽  
pp. 113859
Author(s):  
Andreas Weltin ◽  
Jochen Kieninger ◽  
Gerald A. Urban ◽  
Sarah Buchholz ◽  
Susan Arndt ◽  
...  

2017 ◽  
Vol 8 (3) ◽  
pp. 1969-1976 ◽  
Author(s):  
Zhichao Dai ◽  
Lu Tian ◽  
Bo Song ◽  
Xiangli Liu ◽  
Jingli Yuan

A novel multifunctional probe based on the intramolecular LRET strategy, TRP-NO, was designed for ratiometric and luminescence lifetime detection of lysosomal NO.


Sign in / Sign up

Export Citation Format

Share Document