scholarly journals Methodology for Ensuring a Comfortable Microclimate State in a Smart Home Using an Ensemble of Fuzzy Artificial Neural Networks

Author(s):  
Andrey Mozohin

Analysis of the application of smart home technology indicates an insufficient level of controllability of its infrastructure, which leads to excessive consumption of energy and information resources. The problem of managing the digital infrastructure of human living space, is associated with a large number of highly specialized solutions for home automation, which complicate the management process. Smart home is considered as a set of independent cyber-physical devices aimed at achieving its goal. For coordinated work of cyber-physical devices it is proposed to provide their joint work through a single information center. Simulation of device operation modes in a digital environment preserves the resource of physical devices by making a virtual calculation for all possible variants of interaction of devices between themselves and the physical environment. A methodology for controlling the microclimate of a smart home using an ensemble of fuzzy artificial neural networks is developed, with the example of joint use of air conditioning, ventilation and heating. The neural network algorithm allows you to monitor the parameters of the physical environment, predict the modes of cyber-physical devices and generate control signals for each of them, ensuring the joint operation of devices with minimal resource consumption and information traffic. A variant of practical implementation of a smart home climate control system on the example of a multifunctional educational computer class is proposed. Hybrid neural networks of air conditioning, ventilation and heating systems were developed. The testing of the microclimate control system of a multifunctional university classroom using hybrid neural networks was carried out, a programmable logic controller of domestic production was used as a control device. The goal of management based on cooperating cyber-physical devices is to achieve a minimum of power and information traffic when they work together.

Author(s):  
Odysseas Kontovourkis ◽  
Marios C. Phocas ◽  
Ifigenia Lamprou

AbstractNowadays, on the basis of significant work carried out, architectural adaption structures are considered to be intelligent entities, able to react to various internal or external influences. Their adaptive behavior can be examined in a digital or physical environment, generating a variety of alternative solutions or structural transformations. These are controlled through different computational approaches, ranging from interactive exploration ones, producing alternative emergent results, to automate optimization ones, resulting in acceptable fitting solutions. This paper examines the adaptive behavior of a kinetic structure, aiming to explore suitable solutions resulting in final appropriate shapes during the transformation process. A machine learning methodology that implements an artificial neural networks algorithm is integrated to the suggested structure. The latter is formed by units articulated together in a sequential composition consisting of primary soft mechanisms and secondary rigid components that are responsible for its reconfiguration and stiffness. A number of case studies that respond to unstructured environments are set as examples, to test the effectiveness of the proposed methodology to be used for handling a large number of input data and to optimize the complex and nonlinear transformation behavior of the kinetic system at the global level, as a result of the units’ local activation that influences nearby units in a chaotic and unpredictable manner.


2011 ◽  
Vol 180 ◽  
pp. 168-174 ◽  
Author(s):  
Andrzej Żak

The main aim of paper is to introduce the results of research concentrated on controlling remotely operated underwater vehicle using artificial neural networks. Firstly the mathematical basis of neural network using to control dynamical object were introduced. Next the proposed control system which is using technology of artificial neural network was presented. At the end the example results of research on stabilizing movements’ parameters of underwater vehicle using ROV simulator were presented. The paper is finished by summary which include conclusions derive from results of research.


Sensors ◽  
2020 ◽  
Vol 20 (17) ◽  
pp. 4829
Author(s):  
Ojan Majidzadeh Gorjani ◽  
Antonino Proto ◽  
Jan Vanus ◽  
Petr Bilik

The work investigates the application of artificial neural networks and logistic regression for the recognition of activities performed by room occupants. KNX (Konnex) standard-based devices were selected for smart home automation and data collection. The obtained data from these devices (Humidity, CO2, temperature) were used in combination with two wearable gadgets to classify specific activities performed by the room occupant. The obtained classifications can benefit the occupant by monitoring the wellbeing of elderly residents and providing optimal air quality and temperature by utilizing heating, ventilation, and air conditioning control. The obtained results yield accurate classification.


1998 ◽  
Vol 37 (7) ◽  
pp. 2729-2740 ◽  
Author(s):  
María C. Palancar ◽  
José M. Aragón ◽  
José S. Torrecilla

Sign in / Sign up

Export Citation Format

Share Document