scholarly journals Indirect Recognition of Predefined Human Activities

Sensors ◽  
2020 ◽  
Vol 20 (17) ◽  
pp. 4829
Author(s):  
Ojan Majidzadeh Gorjani ◽  
Antonino Proto ◽  
Jan Vanus ◽  
Petr Bilik

The work investigates the application of artificial neural networks and logistic regression for the recognition of activities performed by room occupants. KNX (Konnex) standard-based devices were selected for smart home automation and data collection. The obtained data from these devices (Humidity, CO2, temperature) were used in combination with two wearable gadgets to classify specific activities performed by the room occupant. The obtained classifications can benefit the occupant by monitoring the wellbeing of elderly residents and providing optimal air quality and temperature by utilizing heating, ventilation, and air conditioning control. The obtained results yield accurate classification.

Author(s):  
Andrey Mozohin

Analysis of the application of smart home technology indicates an insufficient level of controllability of its infrastructure, which leads to excessive consumption of energy and information resources. The problem of managing the digital infrastructure of human living space, is associated with a large number of highly specialized solutions for home automation, which complicate the management process. Smart home is considered as a set of independent cyber-physical devices aimed at achieving its goal. For coordinated work of cyber-physical devices it is proposed to provide their joint work through a single information center. Simulation of device operation modes in a digital environment preserves the resource of physical devices by making a virtual calculation for all possible variants of interaction of devices between themselves and the physical environment. A methodology for controlling the microclimate of a smart home using an ensemble of fuzzy artificial neural networks is developed, with the example of joint use of air conditioning, ventilation and heating. The neural network algorithm allows you to monitor the parameters of the physical environment, predict the modes of cyber-physical devices and generate control signals for each of them, ensuring the joint operation of devices with minimal resource consumption and information traffic. A variant of practical implementation of a smart home climate control system on the example of a multifunctional educational computer class is proposed. Hybrid neural networks of air conditioning, ventilation and heating systems were developed. The testing of the microclimate control system of a multifunctional university classroom using hybrid neural networks was carried out, a programmable logic controller of domestic production was used as a control device. The goal of management based on cooperating cyber-physical devices is to achieve a minimum of power and information traffic when they work together.


2011 ◽  
Vol 36 (4) ◽  
pp. 2449-2454 ◽  
Author(s):  
Seyed Taghi Heydari ◽  
Seyed Mohammad Taghi Ayatollahi ◽  
Najaf Zare

2017 ◽  
Vol 6 (3) ◽  
pp. 57-60
Author(s):  
Денис Кривогуз ◽  
Denis Krivoguz

Modern approaches to the region’s landslide susceptibility assessment are considered in this paper. Have been presented descriptions of the most used techniques for landslide susceptibility assessment: logistic regression, indicator validity, linear discriminant analysis and application of artificial neural networks. These techniques’ advantages and disadvantages are discussed in the paper. The most suitable techniques for various conditions of analysis have been marked. It has been concluded that the most acceptable techniques of analysis for a large number of input data related to the studied region are the method of logistic regression and indicator validity method. With these methods the most accurate results are achieved. When there is a lack of information, it is more expedient to use linear discriminant analysis and artificial neural networks that will minimize potential analysis inaccuracies.


Sign in / Sign up

Export Citation Format

Share Document