scholarly journals Wavelet Analysis as a Tool for Studying the Road Traffic Characteristics in the Context of Intelligent Transport Systems with Incomplete Data

2019 ◽  
Vol 18 (2) ◽  
pp. 326-353
Author(s):  
Oleg Golovnin ◽  
Anastasia Stolbova

A frequent problem of traffic flow characteristics acquisition is data loss, which leads to uneven time series analysis. An effective approach to uneven data analysis is the spectral analysis, which requires obtaining process with a constant sampling interval, for example, by restoring missing data, which leads to the appearance of dating error. Thus, the main purpose of this study is to develop a method and software for wavelet analysis of traffic flow characteristics without restoring the missing data. To analyze and interpret non-stationary uneven time series obtained from traffic monitoring systems, we propose the wavelet transformation method with adjustment of the sampling intervals, which results in a time-frequency domain with a constant sampling interval. Wavelet analysis is applied to the macroscopic traffic flow characteristics. We developed the software for traffic flow wavelet analysis on the "ITSGIS" intelligent transport geo-information framework using the attribute-oriented approach. Wavelet analysis of traffic flows characteristics using Morlet wavelets was accomplished for data analysis of the city of Aarhus, Denmark. Wavelet spectra and scalograms were constructed and analyzed, general dependencies in the frequency distribution of extremes, and differences in spectral power were revealed. The developed software is being experimentally tested in solving practical problems of municipalities and road agencies in Russia.

2021 ◽  
Vol 6 (4) ◽  
pp. 35-39
Author(s):  
O. K. Golovnin ◽  
S. A. Prokhorov ◽  
A. A. Stolbova

The paper proposes an approach to the study of the traffic flow characteristics by wavelet analysis of audio signals, which makes it possible to build fundamental macroscopic models of traffic flows with the possibility of dividing by types of vehicles.


2021 ◽  
Vol 9 (4) ◽  
pp. 378
Author(s):  
Jong Kwan Kim

As high vessel traffic in fairways is likely to cause frequent marine accidents, understanding vessel traffic flow characteristics is necessary to prevent marine accidents in fairways. Therefore, this study conducted semi-continuous spatial statistical analysis tests (the normal distribution test, kurtosis test and skewness test) to understand vessel traffic flow characteristics. First, a vessel traffic survey was conducted in a designated area (Busan North Port) for seven days. The data were collected using an automatic identification system and subsequently converted using semi-continuous processing methods. Thereafter, the converted data were used to conduct three methods of spatial statistical analysis. The analysis results revealed the vessel traffic distribution and its characteristics, such as the degree of use and lateral positioning on the fairway based on the size of the vessel. In addition, the generalization of the results of this study along with that of further studies will aid in deriving the traffic characteristics of vessels on the fairway. Moreover, these characteristics will reduce maritime accidents on the fairway, in addition to establishing the foundation for research on autonomous ships.


Author(s):  
Åsa Enberg ◽  
Matti Pursula

The traffic-flow characteristics on an experimental, 20-km-long three-lane highway section in Finland were studied. The sections of highway that have a separate passing lane consist of three lanes. The central lane is assigned alternately to each direction as a passing lane with a length of 1.05 to 1.70 km. The lengths of the no-overtaking zones between successive passing lanes are 1.5 to 4.0 km. The traffic-flow characteristics on the three-lane highway have been observed by comprehensive before-and-after field studies and complementary simulations. Because it was possible to use passing lanes, the number of overtakings on the three-lane highway was remarkably higher than on the former two-lane highway. The overall average travel speeds were slightly higher, and the speed decreased a little more slowly with increasing flow on the three-lane compared with the two-lane highway. Overall platooning and mean platoon lengths decreased as a result of platoon dispersal on the passing lanes. The speeds used in the passing lanes were clearly higher than in the basic lanes. According to the simulation results, the optimum length for a single passing lane was between 0.5 and 2.5 km depending on flow rate and measure of effectiveness. For the actual three-lane highway conditions, passing lanes 1.0 to 1.5 km long seemed to bring the most benefits.


Sign in / Sign up

Export Citation Format

Share Document