EVALUATION ON PERFORMANCE AND EXHAUST EMISSIONS WITH BIO-DIESEL AND ETHANOL BLENDING ON A DIESEL ENGINE

Author(s):  
K. Ganesh .
Author(s):  
Alex Oliveira ◽  
Junfeng Yang ◽  
Jose Sodre

Abstract This work evaluated the effect of cooled exhaust gas recirculation (EGR) on fuel consumption and pollutant emissions from a diesel engine fueled with B8 (a blend of biodiesel and Diesel 8:92%% by volume), experimentally and numerically. Experiments were carried out on a Diesel power generator with varying loads from 5 kW to 35 kW and 10% of cold EGR ratio. Exhaust emissions (e.g. THC, NOX, CO etc.) were measured and evaluated. The results showed mild EGR and low biodiesel content have minor impact of engine specific fuel consumption, fuel conversion efficiency and in-cylinder pressure. Meanwhile, the combination of EGR and biodiesel reduced THC and NOX up to 52% and 59%, which shows promising effect on overcoming the PM-NOX trade-off from diesel engine. A 3D CFD engine model incorporated with detailed biodiesel combustion kinetics and NOx formation kinetics was validated against measured in-cylinder pressure, temperature and engine-out NO emission from diesel engine. This valid model was then employed to investigate the in-cylinder temperature and equivalence ratio distribution that predominate NOx formation. The results showed that the reduction of NOx emission by EGR and biodiesel is obtained by a little reduction of the local in-cylinder temperature and, mainly, by creating comparatively rich combusting mixture.


Transport ◽  
2014 ◽  
Vol 29 (4) ◽  
pp. 440-448 ◽  
Author(s):  
Tomas Mickevičius ◽  
Stasys Slavinskas ◽  
Slawomir Wierzbicki ◽  
Kamil Duda

This paper presents a comparative analysis of the diesel engine performance and emission characteristics, when operating on diesel fuel and various diesel-biodiesel (B10, B20, B40, B60) blends, at various loads and engine speeds. The experimental tests were performed on a four-stroke, four-cylinder, direct injection, naturally aspirated, 60 kW diesel engine D-243. The in-cylinder pressure data was analysed to determine the ignition delay, the Heat Release Rate (HRR), maximum in-cylinder pressure and maximum pressure gradients. The influence of diesel-biodiesel blends on the Brake Specific Fuel Consumption (bsfc) and exhaust emissions was also investigated. The bench test results showed that when the engine running on blends B60 at full engine load and rated speed, the autoignition delay was 13.5% longer, in comparison with mineral diesel. Maximum cylinder pressure decreased about 1–2% when the amount of Rapeseed Methyl Ester (RME) expanded in the diesel fuel when operating at full load and 1400 min–1 speed. At rated mode, the minimum bsfc increased, when operating on biofuel blends compared to mineral diesel. The maximum brake thermal efficiency sustained at the levels from 0.3% to 6.5% lower in comparison with mineral diesel operating at full (100%) load. When the engine was running at maximum torque mode using diesel – RME fuel blends B10, B20, B40 and B60 the total emissions of nitrogen oxides decreased. At full and moderate load, the emission of carbon monoxide significantly raised as the amount of RME in fuel increased.


2012 ◽  
Vol 20 (3) ◽  
pp. 7-12 ◽  
Author(s):  
Ho-Jeong Gong ◽  
In-Goo Hwang ◽  
A-Hyun Ko ◽  
Cha-Lee Myung ◽  
Sim-Soo Park ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document