scholarly journals River hydrology and recent suspended sediment flux in the Red River: implication for assessing soil erosion and sediment transport/deposition processes

2016 ◽  
Vol 54 (5) ◽  
pp. 614
Author(s):  
Dang Thi Ha ◽  
Alexandra Coynel

Based on a database of daily water discharge and daily suspended particulate matter concentrations along the Red River and at the outlet of the main tributaries (Da and Lo) during the 2005-2010 period, covering contrasting hydrological conditions, the water and sediment fluxes transported by the Red River system were determined. The results showed that only 21% of the discharge is derived from the upper Red River, 54% and 25% being derived from the Da and the Lo Rivers, respectively. In contrast, the distribution of suspended particulate matter (SPM) load is very different of that observed for water discharge: most SPM were eroded from the upstream catchment located in China (78%). Moreover, annual SPM fluxes (FSPM) showed a strong spatial variability between upstream watershed and the outlet of the river. The mean inter-annual FSPM was 30 Mt/yr (i.e. specific flux of 741 t/km²/yr) at the LaoCai site, 38 Mt/yr (i.e. 792 t/km²/yr) at the PhuTho gauging site, 29 Mt/yr (i.e. 193 t/km²/yr) at the SonTay gaugng station. Its values were 4.1 Mt/yr (i.e. 80 t/km²/yr) and 6.6 Mt/yr (i.e. 191 t/km²/yr) for the Da and Lo rivers, respectively. Between the LaoCai and PhuTho sites, both erosion and sedimentation processes occurred together, but strongly depended on the hydrological conditions. Between the PhuTho and SonTay sites, the important loss of SPM flux suggested a dominant deposition process in the floodplain during high water before the delta. These results proved the complex processes of erosion/sedimentation occurring on the Red River watershed.

2018 ◽  
Vol 15 (3) ◽  
pp. 121 ◽  
Author(s):  
Teba Gil-Díaz ◽  
Jörg Schäfer ◽  
Alexandra Coynel ◽  
Cécile Bossy ◽  
Lionel Dutruch ◽  
...  

Environmental contextAntimony is a trace element ubiquitously present in the environment, but data are lacking on its spatio-temporal distribution in aquatic environments. Long-term records serve as essential tools to decipher temporal patterns, historical sources and sinks and background concentrations in an area. We characterise the temporal concentrations, transport and behaviour of antimony in the Garonne River watershed, the main tributary to the Gironde Estuary, the largest estuary in south-west Europe. AbstractKnowledge of the environmental chemistry of antimony (Sb) in aquatic systems is limited, and a better understanding of its geochemical behaviour is needed. Based on a fourteen-year survey (2003–2016) with monthly measurements of dissolved and particulate Sb at five sites in the Lot–Garonne river system, combined with daily measurements of water discharge and suspended particulate matter, this work characterises Sb behaviour in the upstream major river watershed of the Gironde Estuary. The survey provides a first regional geochemical Sb background in the Garonne River watershed for dissolved (~0.2 µg L−1) and Th-normalised particulate Sb (Sbp/Thp ~0.25) concentrations. Observed decreasing temporal trends (<1 ng L−1 in dissolved and <0.02 mg kg−1 in particulate concentrations per month) at sites representing natural concentrations probably reflect global atmospheric Sb dynamics at the watershed scale. Regular seasonal cycles of solid/liquid partitioning, with higher solubility in summer (matching high dissolved and low particulate concentrations), reflect water-discharge and suspended particulate matter transport dynamics and possibly seasonal (bio)geochemical processes. Furthermore, this coefficient decreases from the river to the estuarine reaches (from average log10Kd 4.3 to minimum 3.7 L kg−1), suggesting an increased solubility of Sb in estuarine systems. Flux estimates indicate the relevance of the dissolved fraction in Sb transport (with negligible influence of the colloidal fraction) and a total flux (dissolved + particulate) entering the Gironde Estuary of 5.66 ± 2.96 t year−1 (~50 % particulate). These results highlight the importance of timescales and environmental parameters for understanding and prediction of future Sb biogeochemistry.


2020 ◽  
Vol 211 ◽  
pp. 103403
Author(s):  
Violaine Piton ◽  
Sylvain Ouillon ◽  
Vu Duy Vinh ◽  
Gaël Many ◽  
Marine Herrmann ◽  
...  

2018 ◽  
Vol 18 (3) ◽  
pp. 256-268
Author(s):  
Nguyen Van Thao ◽  
Vu Duy Vinh ◽  
Do Thi Thu Huong ◽  
Chris Gouramanis

In this study, a set of optical and Suspended Particulate Matter data measured in the coastal waters of the Red river delta is examined to develop empirical and semi-analyzed algorithms to process satellite remote sensing data. A scene of high resolution satellite images of Landsat-8 OLI is used to test the algorithm for determining the distribution of Suspended Particulate Matter concentration in marine waters. A numerical model is also developed to calculate Suspended Particulate Matter transportation in the study area and calibrate statistics measured at certain monitoring stations of water flow and Suspended Particulate Matter from river discharged into the sea. The results on Suspended Particulate Matter concentrations in the coastal waters of the Red river delta determined from the satellite image algorithms and those of the numerical model are compared and evaluated.


1998 ◽  
Vol 38 (6) ◽  
pp. 327-335
Author(s):  
Yasunori Kozuki ◽  
Yoshihiko Hosoi ◽  
Hitoshi Murakami ◽  
Katuhiro Kawamoto

In order to clarify the origin and behavior of suspended particulate matter (SPM) in a tidal river, variation of SPM in a tidal river was investigated with regard to its size and constituents. SPM was separated into three groups according to size. Change of contents of titanium and organic substances of each group of SPM was examined. SPM which was discharged by run-off was transported with decomposition and sedimentation in a tidal river. Concentration of SPM with a particle size greater than 0.45 μm increased due to resuspension in a tidal river. Origin of SPM with a size of less than 0.45 μm at upstream areas was from natural soil and most of such SPM which had been transported settled near a river mouth. It was determined from examination of the CN ratio and the ratio of the number of attached bacteria to free bacteria that SPM with a size greater than 1.0 μm at upstream areas was decomposing intensively. At the downstream areas, SPM with a size of less than 0.45 μm came from the sea. SPM with particle size greater than 1.0 μm consisted of plankton and substances which were decomposed sufficiently while flowing.


Sign in / Sign up

Export Citation Format

Share Document