scholarly journals Seiche in the Gulf of Tonkin

1996 ◽  
Vol 18 (1) ◽  
pp. 27-33
Author(s):  
Pham Van Ninh ◽  
Tran Thi Ngoc Duyet

Steichen in the Gulf of Tonkin has been studied by numerical modelling based on the two-dimensional nonlinear shallow water equations system with liquid boundary condition given in the form of forced oscillation. The main proper periods have been defined as follows: 23-25 hours, 1-12 hours, 5-7 hours, 2-4 hours. Among them the 23 hours period is the most evident. The obtained results coincide with observed ones at the long shore hydrometeological stations of the Gulf.

2020 ◽  
Vol 10 (18) ◽  
pp. 6172
Author(s):  
Shanshan Xu ◽  
Frédéric Dias

Wave reflection and wave trapping can lead to long wave run-up resonance. After reviewing the theory of run-up resonance in the framework of the linear shallow water equations, we perform numerical simulations of periodic waves incident on a linearly sloping beach in the framework of the nonlinear shallow water equations. Three different types of boundary conditions are tested: fully reflective boundary, relaxation zone, and influx transparent boundary. The effect of the boundary condition on wave run-up is investigated. For the fully reflective boundary condition, it is found that resonant regimes do exist for certain values of the frequency of the incoming wave, which is consistent with theoretical results. The influx transparent boundary condition does not lead to run-up resonance. Finally, by decomposing the left- and right-going waves into a multi-reflection system, we find that the relaxation zone can lead to run-up resonance depending on the length of the relaxation zone.


Water ◽  
2021 ◽  
Vol 13 (16) ◽  
pp. 2152
Author(s):  
Gonzalo García-Alén ◽  
Olalla García-Fonte ◽  
Luis Cea ◽  
Luís Pena ◽  
Jerónimo Puertas

2D models based on the shallow water equations are widely used in river hydraulics. However, these models can present deficiencies in those cases in which their intrinsic hypotheses are not fulfilled. One of these cases is in the presence of weirs. In this work we present an experimental dataset including 194 experiments in nine different weirs. The experimental data are compared to the numerical results obtained with a 2D shallow water model in order to quantify the discrepancies that exist due to the non-fulfillment of the hydrostatic pressure hypotheses. The experimental dataset presented can be used for the validation of other modelling approaches.


2021 ◽  
pp. 105152
Author(s):  
Victor Michel-Dansac ◽  
Christophe Berthon ◽  
Stéphane Clain ◽  
Françoise Foucher

2010 ◽  
Vol 658 ◽  
pp. 166-187 ◽  
Author(s):  
MATTEO ANTUONO

A global shock solution for the nonlinear shallow water equations (NSWEs) is found by assigning proper seaward boundary data that preserve a constant incoming Riemann invariant during the shock wave evolution. The correct shock relations, entropy conditions and asymptotic behaviour near the shoreline are provided along with an in-depth analysis of the main quantities along and behind the bore. The theoretical analysis is then applied to the specific case in which the water at the front of the shock wave is still. A comparison with the Shen & Meyer (J. Fluid Mech., vol. 16, 1963, p. 113) solution reveals that such a solution can be regarded as a specific case of the more general solution proposed here. The results obtained can be regarded as a useful benchmark for numerical solvers based on the NSWEs.


Sign in / Sign up

Export Citation Format

Share Document