scholarly journals Dynamic responses of an inclined FGSW beam traveled by a moving mass based on a moving mass element theory

Author(s):  
Tran Thi Thom ◽  
Nguyen Dinh Kien ◽  
Le Thi Ngoc Anh

Dynamic analysis of an inclined functionally graded sandwich (FGSW) beam traveled by a moving mass is studied. The beam is composed of a fully ceramic core and two skin layers of functionally graded material (FGM). The material properties of the FGM layers are assumed to vary in the thickness direction by a power-law function, and they are estimated by Mori-Tanaka scheme. Based on the first-order shear deformation theory, a moving mass element, taking into account the effect of inertial, Coriolis and centrifugal forces, is derived and used in combination with Newmark method to compute dynamic responses of the beam. The element using hierarchical functions to interpolate the displacements and rotation is efficient, and it is capable to give accurate dynamic responses by small number of the elements. The effects of the moving mass parameters, material distribution, layer thickness ratio and inclined angle on the dynamic behavior of the FGSW beam are examined and highlighted. 

2013 ◽  
Vol 2013 ◽  
pp. 1-33 ◽  
Author(s):  
Francesco Tornabene ◽  
Alessandro Ceruti

This study deals with a mixed static and dynamic optimization of four-parameter functionally graded material (FGM) doubly curved shells and panels. The two constituent functionally graded shell consists of ceramic and metal, and the volume fraction profile of each lamina varies through the thickness of the shell according to a generalized power-law distribution. The Generalized Differential Quadrature (GDQ) method is applied to determine the static and dynamic responses for various FGM shell and panel structures. The mechanical model is based on the so-called First-order Shear Deformation Theory (FSDT). Three different optimization schemes and methodologies are implemented. The Particle Swarm Optimization, Monte Carlo and Genetic Algorithm approaches have been applied to define the optimum volume fraction profile for optimizing the first natural frequency and the maximum static deflection of the considered shell structure. The optimization aim is in fact to reach the frequency and the static deflection targets defined by the designer of the structure: the complete four-dimensional search space is considered for the optimization process. The optimized material profile obtained with the three methodologies is presented as a result of the optimization problem solved for each shell or panel structure.


2021 ◽  
Vol 8 (4) ◽  
pp. 691-704
Author(s):  
M. Janane Allah ◽  
◽  
Y. Belaasilia ◽  
A. Timesli ◽  
A. El Haouzi ◽  
...  

In this work, an implicit algorithm is used for analyzing the free dynamic behavior of Functionally Graded Material (FGM) plates. The Third order Shear Deformation Theory (TSDT) is used to develop the proposed model. In this contribution, the formulation is written without any homogenization technique as the rule of mixture. The Hamilton principle is used to establish the resulting equations of motion. For spatial discretization based on Finite Element Method (FEM), a quadratic element with four and eight nodes is adopted using seven degrees of freedom per node. An implicit algorithm is used for solving the obtained problem. To study the accuracy and the performance of the proposed approach, we present comparisons with literature and laminate composite modeling results for vibration natural frequencies. Otherwise, we examine the influence of the exponent of the volume fraction which reacts the plates "P-FGM" and "S-FGM". In addition, we study the influence of the thickness on "E-FGM" plates.


Author(s):  
Le Kha Hoa ◽  
Pham Van Vinh ◽  
Nguyen Dinh Duc ◽  
Nguyen Thoi Trung ◽  
Le Truong Son ◽  
...  

A novel nonlocal shear deformation theory is established to investigate functionally graded nanoplates. The significant benefit of this theory is that it consists of only one unknown variable in its displacement formula and governing differential equation, but it can take into account both the quadratic distribution of the shear strains and stresses through the plate thickness as well as the small-scale effects on nanostructures. The numerical solutions of simply supported rectangular functionally graded material nanoplates are carried out by applying the Navier procedure. To indicate the accuracy and convergence of this theory, the present solutions have been compared with other published results. Furthermore, a deep parameter study is also carried out to exhibit the influence of some parameters on the response of the functionally graded material nanoplates.


Axioms ◽  
2020 ◽  
Vol 9 (3) ◽  
pp. 92
Author(s):  
Shaima M. Dsouza ◽  
Tittu Mathew Varghese ◽  
P. R. Budarapu ◽  
S. Natarajan

A non-intrusive approach coupled with non-uniform rational B-splines based isogeometric finite element method is proposed here. The developed methodology was employed to study the stochastic static bending and free vibration characteristics of functionally graded material plates with inhered material randomness. A first order shear deformation theory with an artificial shear correction factor was used for spatial discretization. The output randomness is represented by polynomial chaos expansion. The robustness and accuracy of the framework were demonstrated by comparing the results with Monte Carlo simulations. A systematic parametric study was carried out to bring out the sensitivity of the input randomness on the stochastic output response using Sobol’ indices. Functionally graded plates made up of Aluminium (Al) and Zirconium Oxide (ZrO2) were considered in all the numerical examples.


2010 ◽  
Vol 19 (2) ◽  
pp. 096369351001900 ◽  
Author(s):  
F. Ebrahimi ◽  
H.A. Sepiani

In this study, a formulation for the free vibration and buckling of cylindrical shells made of functionally graded material (FGM) subjected to combined static and periodic axial loadings are presented. The properties are temperature dependent and graded in the thickness direction according to a volume fraction power law distribution. The analysis is based on two different methods of first-order shear deformation theory (FSDT) considering the transverse shear strains and the rotary inertias and the classical shell theory (CST). The results obtained show that the effect of transverse shear and rotary inertias on vibration and buckling of functionally graded cylindrical shells is dependent on the material composition, the temperature environment, the amplitude of static load, the deformation mode, and the shell geometry parameters.


2017 ◽  
Vol 21 (4) ◽  
pp. 1316-1356 ◽  
Author(s):  
Dang T Dong ◽  
Dao Van Dung

This study presents a nonlinear vibration analysis of function graded sandwich doubly curved shallow shells, which reinforced by functionally graded material stiffeners and rested on the Pasternak foundation. The shells are subjected to the combination of mechanical, thermal, and damping loading. Four models of the sandwich shells with general sigmoid and power laws distribution are considered. The governing equations are established based on the third-order shear deformation theory. Von Kármán-type nonlinearity and smeared stiffener technique are taken into account. The explicit expressions for determining natural frequencies, nonlinear frequency–amplitude relation, and time–deflection curves are obtained by employing the Galerkin method. Finally, the fourth-order Runge–Kutta method is applied to investigate the influences of functionally graded material stiffeners, the boundary conditions, the models of the shells, thermal environment, foundation and geometrical parameters on the natural frequencies and dynamic nonlinear responses of the sandwich shells.


2010 ◽  
Vol 132 (6) ◽  
Author(s):  
P. Khazaeinejad ◽  
M. M. Najafizadeh ◽  
J. Jenabi ◽  
M. R. Isvandzibaei

The stability problem of a circular cylindrical shell composed of functionally graded materials with elasticity modulus varying continuously in the thickness direction under combined external pressure and axial compression loads is studied in this paper. The formulation is based on the first-order shear deformation theory. A load interaction parameter is defined to express the combination of applied axial compression and external pressure. The stability equations are derived by the adjacent equilibrium criterion method. These equations are employed to analyze the buckling behavior and obtain the critical buckling loads. A detailed numerical study is carried out to bring out the effects of the power law index of functionally graded material, load interaction parameter, thickness ratio, and aspect ratio on the critical buckling loads. The validity of the present analysis was checked by comparing the present results with those results available in literature.


2020 ◽  
Vol 57 (6A) ◽  
pp. 77
Author(s):  
Nguyen Van Chinh

In this paper, static bending of two-direction functionally graded sandwich (2D-FGSW) plates is studied by using a finite element model. The plates consist of a homogeneous core and two functionally graded skin layers with material properties being graded in both the thickness and length directions by power gradation laws. Based on a third-order shear deformation theory, a finite element model is derived and employed in the analysis. Bending characteristics, including deflections and stresses are evaluated for the plates with classical boundary conditions under various types of distributed load. The effects of material distribution and layer thickness ratio on the static bending behavior of the plates are examined and highlighted.


2017 ◽  
Vol 39 (4) ◽  
pp. 329-338
Author(s):  
Dang Thuy Dong ◽  
Dao Van Dung

In part 1, the governing nonlinear dynamic equations of FGM sandwich doubly curved shallow shells reinforced by FGM stiffeners on elastic foundation subjected to mechanical and thermal loading are established based on the first order shear deformation theory (FSDT) with von Kármán - type nonlinearity and smeared stiffener technique. In the present part, the fourth-order Runge-Kutta method is applied to investigate influences of models of the shells, FGM stiffeners, thermal environment, elastic foundation, and geometrical parameters on the natural frequencies and dynamic nonlinear responses of stiffened FGM sandwich doubly curved shallow shells.


Sign in / Sign up

Export Citation Format

Share Document