A novel quasi-3D trigonometric plate theory for free vibration analysis of advanced composite plates

2018 ◽  
Vol 184 ◽  
pp. 688-697 ◽  
Author(s):  
Moussa Abualnour ◽  
Mohammed Sid Ahmed Houari ◽  
Abdelouahed Tounsi ◽  
El Abbes Adda Bedia ◽  
S.R. Mahmoud
2007 ◽  
Vol 29 (4) ◽  
pp. 529-538 ◽  
Author(s):  
Tran Ich Thinh ◽  
Ngo Nhu Khoa

A new 6-noded stiffened triangular plate element for the analysis of stiffened composite plates based on Mindlins deformation plate theory has been developed. The stiffened plate element is a combination of basic triangular element and bar component. The element can accommodate any number of arbitrarily oriented stiffeners and obviates the use of mesh lines along the stiffeners. Free vibration analyses of stiffened laminated plates have been carried out with this element and the results are compared with those published. The finite element results show very good matching with the experimental ones.


Materials ◽  
2019 ◽  
Vol 12 (22) ◽  
pp. 3675 ◽  
Author(s):  
Tran Huu Quoc ◽  
Tran Minh Tu ◽  
Vu Van Tham

This paper presents a new four-variable refined plate theory for free vibration analysis of laminated piezoelectric functionally graded carbon nanotube-reinforced composite plates (PFG-CNTRC). The present theory includes a parabolic distribution of transverse shear strain through the thickness and satisfies zero traction boundary conditions at both free surfaces of the plates. Thus, no shear correction factor is required. The distribution of carbon nanotubes across the thickness of each FG-CNT layer can be functionally graded or uniformly distributed. Additionally, the electric potential in piezoelectric layers is assumed to be quadratically distributed across the thickness. Equations of motion for PFG-CNTRC rectangular plates are derived using both Maxwell’s equation and Hamilton’s principle. Using the Navier technique, natural frequencies of the simply supported hybrid plate with closed circuit and open circuit of electrical boundary conditions are calculated. New parametric studies regarding the effect of the volume fraction, the CNTs distribution, the number of layers, CNT fiber orientation and thickness of the piezoelectric layer on the free vibration response of hybrid plates are performed.


2021 ◽  
pp. 391-398
Author(s):  
Slimane Merdaci ◽  
Hakima Belghoul ◽  
Adda Hadj Mostefa ◽  
Otmane Zerrouki

2011 ◽  
Vol 471-472 ◽  
pp. 739-744 ◽  
Author(s):  
Ali Fallah ◽  
Mohammad Hossein Kargarnovin ◽  
Mohammad Mohammadi Aghdam

In this paper, free vibration analysis of thin symmetrically laminated skew plates with fully clamped edges is investigated. The governing differential equation for skew plate which is a fourth order partial differential equation (PDE) is obtained by transforming the differential equation in Cartesian coordinates into skew coordinates. Based on the multi-term extended Kantorovich method (MTEKM) an efficient and accurate approximate closed-form solution is presented for the governing PDE. Application of the MTEKM reduces the governing PDE to a dual set of ordinary differential equations. These sets of equations are then solved with infinite power series solution, in an iterative manner until convergence was achieved. Results of this study show the fast rate of convergence of the MTEKM. Usually two or three iterations are enough to obtain reasonably accurate results. The frequency parameters of laminated composite plates are obtained for different skew angles and lay-up configuration for different composites laminates skew plates. Comparisons have been made with the available results in the literature which show the accuracy and efficiency of the method.


Sign in / Sign up

Export Citation Format

Share Document