scholarly journals On modelling and control design for self-balanced two-wheel vehicle

2008 ◽  
Vol 30 (3) ◽  
Author(s):  
Nguyen Hoang Quang

In this paper, the modeling and control design of a self-balancing mobile robot are presented. The method of sub-structures is employed to derive the differential equations of motion of the robot. Based on the linearized equations of motion, a controller is designed to maintain a stable motion of the robot. Some numerical simulation results are shown to clarify the designed controller.

1995 ◽  
Vol 28 (14) ◽  
pp. 367-371
Author(s):  
S. Narayanan ◽  
W.P. Dayawansa

Author(s):  
Herschel Pangborn ◽  
Andrew G. Alleyne

The effects of air humidity on the performance of refrigerant-to-air heat exchangers in vapor compression systems (VCSs) are non-negligible in modeling and control design for some applications. Such applications include both those in which the ambient humidity is expected to vary greatly over time and those in which control of the air outlet humidity is desired. This paper presents a control-oriented dynamic model for cross-flow refrigerant-to-air heat exchangers that uses knowledge of the air inlet humidity to improve the accuracy of refrigerant-side and air-side outputs, as well as to calculate the air outlet humidity and rate of condensate formation. Simulation results are validated with experimental data collected from a 1kW VCS test stand.


Author(s):  
Xiangying Guo ◽  
Wei Zhang ◽  
Ming-Hui Yao

This paper presents an analysis on the nonlinear dynamics and multi-pulse chaotic motions of a simply-supported symmetric cross-ply composite laminated rectangular thin plate with the parametric and forcing excitations. Firstly, based on the Reddy’s three-order shear deformation plate theory and the model of the von Karman type geometric nonlinearity, the nonlinear governing partial differential equations of motion for the composite laminated rectangular thin plate are derived by using the Hamilton’s principle. Then, using the second-order Galerkin discretization approach, the partial differential governing equations of motion are transformed to nonlinear ordinary differential equations. The case of the primary parametric resonance and 1:1 internal resonance is considered. Four-dimensional averaged equation is obtained by using the method of multiple scales. From the averaged equation obtained here, the theory of normal form is used to give the explicit expressions of normal form. Based on normal form, the energy phase method is utilized to analyze the global bifurcations and multi-pulse chaotic dynamics of the composite laminated rectangular thin plate. The results obtained above illustrate the existence of the chaos for the Smale horseshoe sense in a parametrical and forcing excited composite laminated thin plate. The chaotic motions of the composite laminated rectangular thin plate are also found by using numerical simulation. The results of numerical simulation also indicate that there exist different shapes of the multi-pulse chaotic motions for the composite laminated rectangular thin plate.


Sign in / Sign up

Export Citation Format

Share Document