scholarly journals A unified modeling and control design for precision transmission system with friction and backlash

2016 ◽  
Vol 8 (5) ◽  
pp. 168781401664988 ◽  
Author(s):  
Xiulan Bao ◽  
Jincheng Mao ◽  
Xin Luo
Robotica ◽  
2013 ◽  
Vol 32 (4) ◽  
pp. 515-532 ◽  
Author(s):  
Adam Y. Le ◽  
James K. Mills ◽  
Beno Benhabib

SUMMARYA novel rigid-body control design methodology for 6-degree-of-freedom (dof) parallel kinematic mechanisms (PKMs) is proposed. The synchronous control of PKM joints is addressed through a novel formulation of contour and lag errors. Robust performance as a control specification is addressed. A convex combination controller design approach is applied to address the problem of simultaneously satisfying multiple closed-loop specifications. The applied dynamic modeling approach allows the design methodology to be extended to 6-dof spatial PKMs. The methodology is applied to the design of a 6-dof PKM-based meso-milling machine tool and simulations are conducted.


2020 ◽  
Vol 10 (10) ◽  
pp. 3514 ◽  
Author(s):  
Adam Szabo ◽  
Tamas Becsi ◽  
Peter Gaspar

The paper presents the modeling and control design of a floating piston electro-pneumatic gearbox actuator and, moreover, the industrial validation of the controller system. As part of a heavy-duty vehicle, it needs to meet strict and contradictory requirements and units applying the system with different supply pressures in order to operate under various environmental conditions. Because of the high control frequency domain of the real system, post-modern control methods with high computational demands could not be used as they do not meet real-time requirements on automotive level. During the modeling phase, the essential simplifications are shown with the awareness of the trade-off between calculation speed and numerical accuracy to generate a multi-state piecewise-linear system. Two LTI control methods are introduced, i.e., a PD and an Linear-Quadratic Regulators (LQR) solution, in which the continuous control signals are transformed into discrete voltage solenoid commands for the valves. The validation of both the model and the control system are performed on a real physical implementation. The results show that both modeling and control design are suitable for the control tasks using floating piston cylinders and, moreover, these methods can be extended to electro-pneumatic cylinders with different layouts.


2011 ◽  
Vol 204-210 ◽  
pp. 17-20
Author(s):  
Ding Zhen Li ◽  
Rui Min Jin

This thesis is according to the pitching part of airborne radar servo system. The electromechanical coupling model and optimization model which includes structure parameters and control parameters are built up based on model of mechanism transmission system and electricity control system. The dynamics model of mechanism transmission system includes the nonlinearity of backlash and is considered the influence of parameters for dynamics properties in structure of the mechanism transmission system. The method of integrated structure and control design is applied on the optimization model using GA. Simulation is done based on MATLAB/SIMULINK. Simulation results show that the method of integrated structure and control design is feasible and effective in servo system.


Sign in / Sign up

Export Citation Format

Share Document