scholarly journals Isolation of heat shock promoter HSP18.2 from Arabidopsis thaliana and application in recombinant protein expression

2015 ◽  
Vol 36 (3) ◽  
Author(s):  
Nguyen Chi Mai ◽  
Nguyen Tuong Van ◽  
Tran My Linh ◽  
Le Quynh Lien
2021 ◽  
Author(s):  
Gayathri Ravitchandirane ◽  
Sheetal Bandhu ◽  
Tapan K. Chaudhuri

Abstract BackgroundDuring the recombinant protein expression, foreign proteins are generated in insoluble and inactive aggregates in E. coli cell factories, which inhibits E. coli from being employed as an expression host despite its numerous advantages and ease of use. The yeast mitochondrial aconitase protein, which has a tendency to aggregate when expressed in E. coli cells in the absence of heterologous chaperones GroEL/ES was utilised as a model to investigate how the modulation of physiological stimuli in the host cell can increase protein solubility. The process variables such as incubation temperature, inducer concentrations, growth media, and the presence of folding modulators such as exogenous molecular chaperones or osmolytes are crucial for the cellular folding and are investigated in the study. The processes the physiological stress such as osmotic and heat shock stimulation in the host cells and thereby their effect on the solubility and activity of recombinant proteins was also analysed.ResultsOf the various methods discussed, the cells subjected to the addition of osmolytes and pre-induction heat shock exhibited significant enhancement in the recombinant aconitase activity. The concomitant GroEL/ES expression further assists the folding of these soluble aggregates and increases the functional protein molecules in the cytoplasm of the recombinant E. coli cells.ConclusionsThe recombinant E. coli cells enduring physiological stress provide a cytosolic environment for the enhancement in the solubility and activity of the recombinant proteins. GroEL/ES-expressing cells not only aided in the folding of recombinant proteins, but also had an effect on the physiology of the expression host. The improvement in the specific growth rate and aconitase productivity during chaperone GroEL/ES co-expression is attributed to the reduction in overall cellular stress caused by the expression host's aggregation-prone recombinant protein expression.


2021 ◽  
pp. 100838
Author(s):  
Chenxu Guo ◽  
Francis K. Fordjour ◽  
Shang Jui Tsai ◽  
James C. Morrell ◽  
Stephen J. Gould

Author(s):  
Deepak B. Thimiri Govinda Raj ◽  
Niamat Ali Khan ◽  
Srisaran Venkatachalam ◽  
Sivakumar Arumugam

2014 ◽  
Vol 34 (2) ◽  
pp. 211-221 ◽  
Author(s):  
Guohua Fu ◽  
Vojislava Grbic ◽  
Shengwu Ma ◽  
Lining Tian

2015 ◽  
Vol 89 (13) ◽  
pp. 6746-6760 ◽  
Author(s):  
Nenavath Gopal Naik ◽  
Huey-Nan Wu

ABSTRACTDengue virus (DENV) nonstructural protein 4B (NS4B) is an endoplasmic reticulum (ER) membrane-associated protein, and mutagenesis studies have revealed its significance in viral genome replication. In this work, we demonstrated that NS4B is an N-glycosylated protein in virus-infected cells as well as in recombinant protein expression. NS4B is N glycosylated at residues 58 and 62 and exists in two forms, glycosylated and unglycosylated. We manipulated full-length infectious RNA clones and subgenomic replicons to generate N58Q, N62Q, and N58QN62Q mutants. Each of the single mutants had distinct effects, but the N58QN62Q mutation resulted in dramatic reduction of viral production efficiency without affecting secretion or infectivity of the virion in mammalian and mosquito C6/36 hosts. Real-time quantitative PCR (qPCR), subgenomic replicon, andtrans-complementation assays indicated that the N58QN62Q mutation affected RNA replication possibly by the loss of glycans. In addition, four intragenic mutations (S59Y, S59F, T66A, and A137T) were obtained from mammalian and/or mosquito C6/36 cell culture systems. All of these second-site mutations compensated for the replication defect of the N58QN62Q mutant without creating novel glycosylation sites.In vivoprotein stability analyses revealed that the N58QN62Q mutation alone or plus a compensatory mutation did not affect the stability of NS4B. Overall, our findings indicated that mutation of putative N-glycosylation sites affected the biological function of NS4B in the viral replication complex.IMPORTANCEThis is the first report to identify and reveal the biological significance of dengue virus (DENV) nonstructural protein 4B (NS4B) posttranslation N-glycosylation to the virus life cycle. The study demonstrated that NS4B is N glycosylated in virus-infected cells and in recombinant protein expression. NS4B is modified by glycans at Asn-58 and Asn-62. Functional characterization implied that DENV NS4B utilizes the glycosylation machinery in both mammalian and mosquito hosts. Four intragenic mutations were found to compensate for replication and subsequent viral production deficiencies without creating novel N-glycosylation sites or modulating the stabilities of the protein, suggesting that glycans may be involved in maintaining the NS4B protein conformation. NS4B glycans may be necessary elements of the viral life cycle, but compensatory mutations can circumvent their requirement. This novel finding may have broader implications in flaviviral biology as the most likely glycan at Asn-62 of NS4B is conserved in DENV serotypes and in some related flaviviruses.


2016 ◽  
Vol 15 (1) ◽  
Author(s):  
Silvia Heiss ◽  
Angelika Hörmann ◽  
Christopher Tauer ◽  
Margot Sonnleitner ◽  
Esther Egger ◽  
...  

2010 ◽  
Vol 114 (10) ◽  
pp. 809-816 ◽  
Author(s):  
Patrícia Kott Tomazett ◽  
Carlos Roberto Félix ◽  
Henrique Leonel Lenzi ◽  
Fabrícia de Paula Faria ◽  
Célia Maria de Almeida Soares ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document