scholarly journals Multimodal Approaches for the Improvement of the Cellular Folding of a Recombinant Iron Regulatory Protein in E. Coli

Author(s):  
Gayathri Ravitchandirane ◽  
Sheetal Bandhu ◽  
Tapan K. Chaudhuri

Abstract BackgroundDuring the recombinant protein expression, foreign proteins are generated in insoluble and inactive aggregates in E. coli cell factories, which inhibits E. coli from being employed as an expression host despite its numerous advantages and ease of use. The yeast mitochondrial aconitase protein, which has a tendency to aggregate when expressed in E. coli cells in the absence of heterologous chaperones GroEL/ES was utilised as a model to investigate how the modulation of physiological stimuli in the host cell can increase protein solubility. The process variables such as incubation temperature, inducer concentrations, growth media, and the presence of folding modulators such as exogenous molecular chaperones or osmolytes are crucial for the cellular folding and are investigated in the study. The processes the physiological stress such as osmotic and heat shock stimulation in the host cells and thereby their effect on the solubility and activity of recombinant proteins was also analysed.ResultsOf the various methods discussed, the cells subjected to the addition of osmolytes and pre-induction heat shock exhibited significant enhancement in the recombinant aconitase activity. The concomitant GroEL/ES expression further assists the folding of these soluble aggregates and increases the functional protein molecules in the cytoplasm of the recombinant E. coli cells.ConclusionsThe recombinant E. coli cells enduring physiological stress provide a cytosolic environment for the enhancement in the solubility and activity of the recombinant proteins. GroEL/ES-expressing cells not only aided in the folding of recombinant proteins, but also had an effect on the physiology of the expression host. The improvement in the specific growth rate and aconitase productivity during chaperone GroEL/ES co-expression is attributed to the reduction in overall cellular stress caused by the expression host's aggregation-prone recombinant protein expression.

2021 ◽  
Vol 12 ◽  
Author(s):  
Gema Lozano Terol ◽  
Julia Gallego-Jara ◽  
Rosa Alba Sola Martínez ◽  
Adrián Martínez Vivancos ◽  
Manuel Cánovas Díaz ◽  
...  

Recombinant protein production for medical, academic, or industrial applications is essential for our current life. Recombinant proteins are obtained mainly through microbial fermentation, with Escherichia coli being the host most used. In spite of that, some problems are associated with the production of recombinant proteins in E. coli, such as the formation of inclusion bodies, the metabolic burden, or the inefficient translocation/transport system of expressed proteins. Optimizing transcription of heterologous genes is essential to avoid these drawbacks and develop competitive biotechnological processes. Here, expression of YFP reporter protein is evaluated under the control of four promoters of different strength (PT7lac, Ptrc, Ptac, and PBAD) and two different replication origins (high copy number pMB1′ and low copy number p15A). In addition, the study has been carried out with the E. coli BL21 wt and the ackA mutant strain growing in a rich medium with glucose or glycerol as carbon sources. Results showed that metabolic burden associated with transcription and translation of foreign genes involves a decrease in recombinant protein expression. It is necessary to find a balance between plasmid copy number and promoter strength to maximize soluble recombinant protein expression. The results obtained represent an important advance on the most suitable expression system to improve both the quantity and quality of recombinant proteins in bioproduction engineering.


PLoS ONE ◽  
2018 ◽  
Vol 13 (7) ◽  
pp. e0198715 ◽  
Author(s):  
Matteo Rovere ◽  
Alex Edward Powers ◽  
Dushyant Shailesh Patel ◽  
Tim Bartels

2020 ◽  
Vol 21 (3) ◽  
pp. 990 ◽  
Author(s):  
Kangsan Kim ◽  
Donghui Choe ◽  
Dae-Hee Lee ◽  
Byung-Kwan Cho

A large proportion of the recombinant proteins manufactured today rely on microbe-based expression systems owing to their relatively simple and cost-effective production schemes. However, several issues in microbial protein expression, including formation of insoluble aggregates, low protein yield, and cell death are still highly recursive and tricky to optimize. These obstacles are usually rooted in the metabolic capacity of the expression host, limitation of cellular translational machineries, or genetic instability. To this end, several microbial strains having precisely designed genomes have been suggested as a way around the recurrent problems in recombinant protein expression. Already, a growing number of prokaryotic chassis strains have been genome-streamlined to attain superior cellular fitness, recombinant protein yield, and stability of the exogenous expression pathways. In this review, we outline challenges associated with heterologous protein expression, some examples of microbial chassis engineered for the production of recombinant proteins, and emerging tools to optimize the expression of heterologous proteins. In particular, we discuss the synthetic biology approaches to design and build and test genome-reduced microbial chassis that carry desirable characteristics for heterologous protein expression.


Author(s):  
N. Hemamalini ◽  
S. Ezhilmathi ◽  
A. Angela Mercy

Escherichia coli is the most extensively used organism in recombinant protein production. It has several advantages including a very short life cycle, ease of genetic manipulation and the well-known cell biology etc. which makes E. coli as the perfect host for recombinant protein expression. Despite many advantages, E. coli also have few disadvantages such as coupled transcription and translation and lack of eukaryotic post-translational modifications. These challenges can be overcome by adopting several strategies such as, using different E. coli expression vectors, changing the gene sequence without altering the functional domain, modified E. coli strain usage, changing the culture parameters and co-expression with a molecular chaperone. In this review, we present the level of strategies used to enhance the recombinant protein expression and its stability in E. coli.


2018 ◽  
Vol 24 (6) ◽  
pp. 718-725 ◽  
Author(s):  
Seyed Mohammad Gheibi Hayat ◽  
Najmeh Farahani ◽  
Behrouz Golichenari ◽  
Amirhossein Sahebkar

Background: Host, vector, and culture conditions (including cultivation media) are considered among the three main elements contributing to a successful production of recombinant proteins. Accordingly, one of the most common hosts to produce recombinant therapeutic proteins is Escherichia coli. Methodology: A comprehensive literature review was performed to identify important factors affecting production of recombinant proteins in Escherichia coli. Results: Escherichia coli is taken into account as the easiest, quickest, and cheapest host with a fully known genome. Thus, numerous modifications have been carried out on Escherichia coli to optimize it as a good candidate for protein expression and; as a result, several engineered strains of Escherichia coli have been designed. In general; host strain, vector, and cultivation parameters are recognized as crucial ones determining success of recombinant protein expression in Escherichia coli. In this review, the role of host, vector, and culture conditions along with current pros and cons of different types of these factors leading to success of recombinant protein expression in Escherichia coli were discussed. Conclusion: Successful protein expression in Escherichia coli necessitates a broad knowledge about physicochemical properties of recombinant proteins, selection among common strains of Escherichia coli and vectors, as well as factors related to media including time, temperature, and inducer.


2008 ◽  
Vol 135 (1) ◽  
pp. 34-44 ◽  
Author(s):  
Karin Dürrschmid ◽  
Helga Reischer ◽  
Wolfgang Schmidt-Heck ◽  
Thomas Hrebicek ◽  
Reinhard Guthke ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document