scholarly journals NDSHA - The New Paradigm for RSHA - An Updated Review

2021 ◽  
Vol 43 (2) ◽  
Author(s):  
J. Bela ◽  
G. F. Panza

A New Paradigm (data driven and not like the currently model driven) is needed for Reliable Seismic Hazard Assessment RSHA. Neo-Deterministic Seismic Hazard Assessment (NDSHA) integrates earthquake geology, earthquake science, and particularly earthquake physics to finally achieve a New (and needed) Paradigm for Reliable Seismic Hazard Assessment RSHA.Although observations from many recent destructive earthquakes have all confirmed the validity of NDSHA’s approach and application to earthquake hazard forecasting-nonetheless damaging earthquakes still cannot yet be predicted with a precision requirement consistent with issuing a red alert and evacuation order to protect civil populations. However, intermediate-term (time scale) and middle-range (space scale) predictions of main shocks above a pre-assigned threshold may be properly used for the implementation of low-key preventive safety actions, as recommended by UNESCO in 1997. Furthermore, a proper integration of both seismological and geodetic information has been shown to also reliably contribute to a reduction of the geographic extent of alarms and it therefore defines a New Paradigm for TimeDependent Hazard Scenarios: Intermediate-Term (time scale) and Narrow-Range (space scale) Earthquake Prediction.

2021 ◽  
Vol 43 (2) ◽  
pp. 111-188
Author(s):  
J. Bela ◽  
G. F. Panza

A New Paradigm (data driven and not like the currently model driven) is needed for Reliable Seismic Hazard Assessment RSHA. Neo-Deterministic Seismic Hazard Assessment (NDSHA) integrates earthquake geology, earthquake science, and particularly earthquake physics to finally achieve a New (and needed) Paradigm for Reliable Seismic Hazard Assessment RSHA.Although observations from many recent destructive earthquakes have all confirmed the validity of NDSHA’s approach and application to earthquake hazard forecasting-nonetheless damaging earthquakes still cannot yet be predicted with a precision requirement consistent with issuing a red alert and evacuation order to protect civil populations. However, intermediate-term (time scale) and middle-range (space scale) predictions of main shocks above a pre-assigned threshold may be properly used for the implementation of low-key preventive safety actions, as recommended by UNESCO in 1997. Furthermore, a proper integration of both seismological and geodetic information has been shown to also reliably contribute to a reduction of the geographic extent of alarms and it therefore defines a New Paradigm for TimeDependent Hazard Scenarios: Intermediate-Term (time scale) and Narrow-Range (space scale) Earthquake Prediction. 


1999 ◽  
Vol 42 (6) ◽  
Author(s):  
M. J. Jiménez ◽  
M. García-Fernández

The contribution of the Ibero-Maghreb region to the global GSHAP map has been the result of a fruitful cooperation among the participants in the established Working Group including representatives from Algeria, Morocco, Portugal, Spain and Tunisia and coordinated by ICTJA-CSIC, Spain. For the first time, a map of regional seismic source zones is presented, and agreement on a common procedure for hazard computation in the region has been achieved. The computed Ibero-Maghreb seismic hazard map constitutes the first step towards a uniform hazard assessment for the region. Further joint regional efforts are still needed for earthquake hazard studies based on a homogeneous regional earthquake catalogue. Ongoing initiatives in relation to seismic hazard assessment in the Mediterranean should profit both from these results and the established cooperation among different groups in the region as well as contribute to future regional studies.


2020 ◽  
Vol 1 (2) ◽  
Author(s):  
Cao Dinh Trong ◽  
Xuan-Nam BUI ◽  
Pham NAM HUNG ◽  
Thai ANH TUAN ◽  
Mai XUAN BACH ◽  
...  

This paper presents the seismic hazard assessment for Thuong Tan-Tan My quarries in Di An commune, Binh Duong province, Vietnam. Combination methods of gravity and magneto-telluric were used to estimate the dip angle and the width of the seismic source. The highest water column of 160 m will cause direct stress on the reservoir bottom with a maximum value of 1535.600 kPa and Coulomb stress of 68.693 kPa (at a depth of 2 km). The typical components of natural earthquake hazard (Mn.max = 5.0, depth of 10 km) in Thuong Tan - Tan My reservoir have the following values: peak ground acceleration PGA = 0.073 g ÷ 0.212 g; peak ground velocity PGV = 2.662 cm/s ÷ 7.984 cm/s; peak ground displacement PGD = 0.706 cm ÷ 1.918 cm at 10% probability of exceedance in 50 years. The typical components of triggered earthquake hazard (Mtr.max = 3.5, depth of 6 km) in Thuong Tan - Tan My reservoir have the following values: peak ground acceleration PGA = 0.024 g ÷ 0.172 g; peak ground velocity PGV = 0 ÷ 5.484 cm/s; peak ground displacement PGD = 0.061 cm ÷ 0.461 cm at 10% probability of exceedance in 50 years.


2007 ◽  
Vol 23 (1) ◽  
pp. 175-197 ◽  
Author(s):  
Elham Shabani ◽  
Noorbakhsh Mirzaei

Seismic hazard assessment and zoning of the Kermanshah-Sanandaj region in western Iran is conducted using probabilistic approach. Two maps have been prepared to indicate the earthquake hazard of the region in the form of iso-acceleration contour lines. They display a probabilistic estimate of peak ground acceleration (PGA) over bedrock for the return periods of 475 and 50 years. A uniform catalog of earthquakes containing historical and instrumental events covering the period from the eleventh century A.D. to 2003 is used. Twelve potential seismic sources are modeled as area sources in the region. Seismicity parameters are evaluated using the method in which magnitude uncertainty and incompleteness of earthquake data are considered. Seismic hazard assessment is carried out for a grid of 357 points with 0.1° intervals using the SEISRISKIII computer program for the study area encompassed by the 46–48° E longitudes and 34–36° N latitudes. This region includes the most active segments of the Zagros Main Recent Fault; among them, the Sahneh and Nahavand faults have a well-known history of intense seismic activity. PGA values for this region are estimated to be 0.35 g and 0.20 g for 475- and 50-years return periods, respectively.


2021 ◽  
Vol 14 (9) ◽  
Author(s):  
Etoundi Delair Dieudonné Ndibi ◽  
Eddy Ferdinand Mbossi ◽  
Nguet Pauline Wokwenmendam ◽  
Bekoa Ateba ◽  
Théophile Ndougsa-Mbarga

2014 ◽  
Vol 85 (6) ◽  
pp. 1316-1327 ◽  
Author(s):  
C. Beauval ◽  
H. Yepes ◽  
L. Audin ◽  
A. Alvarado ◽  
J.-M. Nocquet ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document