scholarly journals Seasonal changes in metal accumulation and distribution in the organs of Phragmites australis (common reed) from Lake Skadar, Montenegro

2013 ◽  
Vol 78 (8) ◽  
pp. 1241-1258 ◽  
Author(s):  
Vlatko Kastratovic ◽  
Sladjana Krivokapic ◽  
Dijana Djurovic ◽  
Nada Blagojevic

Due to its ability to accumulate metals, availability throughout the year and its large biomass, Phragmites australis (common reed) is suitable for biomonitoring studies for the evaluation of load level of water ecosystem with trace metals. The heavy metals concentration in P.australis tissue can be several ten to several thousand times higher than those in the surrounding water. In this study we examined the content of heavy metals (Cd, Co, Cr, Cu, Mn, Ni, Pb, Zn, Sr and V) in sediment, water and different organs of Phragmites australis collected from Lake Skadar, Montenegro, during different seasons of the year 2011. The highest concentrations of Sr were found in the leaves, while the other studied metals showed their highest concentrations in the roots. Thus, P. australis is considered a root bioaccumulation species. For most metals the concentration in roots and stems increases over time until the end of the growing season, and then decreases, while the concentration in leaves increases even after the growing season of the plant. If P. australis is used for phytoremediation purposes, then it should be harvested after the growing season because then the concentration of metals in the aboveground parts is maximal.

2018 ◽  
Vol 54 (2A) ◽  
pp. 259
Author(s):  
Tran Thi Huyen Nga

In this study, Phragmites australis (common reed) was transplanted into solutions added with different concentrations of Mn, Zn, Cd, Pb, and As for 30 days in the laboratory (10 days of incubation and repeated three times without changing the plant) to assess the removal of these metals and its accumulation in the plant. The results showed that high removal efficiency was achieved by growing P.australis. The highest daily removal rates of heavy metals and As were obtained after 1 day of new solution addition. The highest concentrations of Mn, Zn, Cd, Pb, and As in the plant roots were 3920, 1020, 90.9, 1350, and 183 mg kg–1 dry wt., respectively; those in the stems were 465, 108, 26.4, 227, and 74.0 mg kg–1 dry wt.; and those in the leaves were 716, 150, 18.1, 157, and 88.3 mg kg–1 dry wt. The results of this study indicated that P. australis has the ability to remove simultaneously these metals from water, making it a potential species for phytoremediation of wastewater from Pb-Zn mine.


2015 ◽  
pp. 75-81 ◽  
Author(s):  
Amin Mojiri ◽  
Hamidi Abdul Aziz ◽  
Ramlah Bt Mohd Tajuddin ◽  
Shahin Gavanji ◽  
Ali Gholami

2007 ◽  
Vol 62 (5-6) ◽  
pp. 417-426 ◽  
Author(s):  
Abdelmalek Hakmaoui ◽  
Mohammed Ater ◽  
Károly Bóka ◽  
Matilde Barón

We have compared the effect of toxic Cu and Cd concentrations on growth, metal accumulation, and chloroplast ultrastructure of willow (Salix purpurea L.) and reed [Phragmites australis (Cav.) Trin. ex Steud.]. After a 10-day treatment, both species have tolerated to some extent the lowest concentration of both metals; however, plant growth was strongly reduced at the highest Cu and Cd concentrations. These plants could be described as Cutolerant at the lowest concentration tested, showing a higher tolerance index in reed than in willow; in contrast, willow exhibited higher tolerance against Cd. Both plants appeared to be moderate root accumulators of Cu and Cd. Ultrastructural studies revealed special features that can provide some protection against heavy metals stress, such as ferritin aggregates in the stroma. In addition, Cu and Cd induced distortion of thylakoids, reduction of grana stacks, as well as an increased number and size of plastoglobuli and peripheral vesicles.


2008 ◽  
Vol 1 (1) ◽  
pp. 12-16 ◽  
Author(s):  
Jeffrey F. Derr

AbstractCommon reed is an invasive species that has overtaken wetland habitats in the eastern United States and can spread into roadsides, turf, and ornamental sites. The postemergence grass herbicides used in nursery crops and turf, clethodim, fenoxaprop, fluazifop, and sethoxydim, did not control common reed. Dithiopyr, MSMA, and quinclorac also did not control this weed. Glyphosate applied at 2.24 kg ai/ha (2.0 lb ai/ac) was more effective in preventing regrowth of common reed than glufosinate at 1.12 kg/ha (1.0 lb ai/ac). Mowing every 2, 4, or 8 wk controlled common reed 93, 81, and 69%, respectively, by the end of the growing season, but only reduced regrowth by approximately 55% the following May. Applying glyphosate at 2% v/v either 1 mo after a mowing or 2 wk prior to mowing reduced common reed regrowth the following May by approximately 90%. Applying glyphosate without mowing provided similar common reed control the following spring compared to glyphosate combined with a single mowing. Common reed regrew in all treated plots 1 yr after study initiation, indicating that control treatments must be repeated if common reed is to be eradicated from a site.


2019 ◽  
Vol 43 (1) ◽  
pp. 85-95 ◽  
Author(s):  
Milijana Prica ◽  
Gordana Andrejic ◽  
Jasmina Sinzar-Sekulic ◽  
Tamara Rakic ◽  
Zeljko Dzeletovic

Heavy metal contamination of aquatic ecosystems directly threatens the health, production and biodiversity of aquatic and surrounding terrestrial ecosystems, and it represents a serious global problem. Metal extraction during ore processing produces large amounts of wastes that remain in tailings at the mining site. Fine waste particles represent a long-term source of potentially toxic metals that can be released into the ground and surface water as a result of their progressive chemical weathering. Aquatic macrophythes have a major role in absorption and accumulation of heavy metals and thereby in natural water purification. The presence of naturally growing plants on mine tailing ponds indicates their tolerance of heavy metal pollution and suggests a possible role for them in phytoremediation. In the present study, we analysed the concentrations of heavy metals (Fe, Mn, Ni, Zn, Pb, Cd, Co, Cu) in Phragmites australis plants growing spontaneously in shallow water of several mine tailing ponds. The aims of the study were to define chemical properties of the mine spoils, determine the concentrations of heavy metals in different plant organs and assess the phytoremediation potential of common reed. The investigated sediments were notably rich in both total and available forms of Fe, Pb, Zn and Cu, with their upper concentrations close to phytotoxic levels. The greatest amounts of almost all of the investigated metals in plants from all three mine tailing ponds were found in the roots, with their concentrations positively correlated with the amounts of their available forms in the corresponding sediment. The far higher metal concentrations in the roots in comparison with other plant organs clearly indicate that the metals were strongly sequestrated within root cortical tissues and were not transferred across the endodermis. Taken altogether, the presence of the greatest amounts of metals in roots, high bioaccumulation factor and low translocation factor show that P. australis is an excluder plant species with a good phytostabilisation potential. As such, it might be efficiently used in rhizofiltration of wastewaters.


2021 ◽  
Vol 13 (14) ◽  
pp. 7745
Author(s):  
Daniela Baldantoni ◽  
Alessandro Bellino

With a view of shedding light on the accumulation capability of the epigeous organs of common reed (Phragmites australis), employed worldwide in metal biomonitoring, an accumulation study of Cd, Cr, Cu, Fe, Mn, Ni, Pb and Zn was performed, focusing on leaves belonging to different whorls and culms. To this end, in five sampling sites on the littoral zone of the volcanic Lake Averno (Italy), and in one occasion (autumn) before plant senescence, leaves of different ages and culms were collected and analyzed for metal concentrations. In terms of the suitability for biomonitoring, culms demonstrated poor performances in relation to the low metal accumulation and the difficulties in sampling and processing, whereas leaves proved their effectiveness in highlighting whole plant exposure. Since the accumulation degree of Cr, Cu, Fe and Zn is unaffected by leaf age, the pooling of leaves from different whorls is advisable to improve the representativeness of samplings. This strategy becomes mandatory in the case of Ni, the non-monotonic age-dependent variations of which would affect the derivation of contamination gradients otherwise. For Mn, Cd and Pb, the accumulation patterns strictly dependent on age can instead be exploited in selecting the sensitivity of biomonitoring by focusing on the organs where they are preferentially accumulated: old leaves for Mn and young leaves for Cd and Pb.


Sign in / Sign up

Export Citation Format

Share Document