Removal and bioaccumulation of heavy metals from aqueous solutions using freshwater algae

2014 ◽  
Vol 71 (1) ◽  
pp. 38-44 ◽  
Author(s):  
Isha Shamshad ◽  
Sardar Khan ◽  
Muhammad Waqas ◽  
Nadeem Ahmad ◽  
Khushnood -Ur-Rehman ◽  
...  

Four freshwater algae, including Cladophora glomerata, Oedogonium westii, Vaucheria debaryana and Zygnema insigne, were tested for their bioaccumulation capacity for cadmium (Cd), chromium (Cr) and lead (Pb) in a controlled environment with an average temperature of 18 °C, and light/dark duration of 12:12 h. Experiments were performed in aqueous solutions containing selected heavy metals (HM) (ranging from 0.05 to 1.5 mg L−1) with 0.5 g of living algae at 18 °C and pH 6.8. The results indicated that C. glomerata was observed to be the most competent species for the removal of Cr, Cd and Pb from aqueous solutions. HM removal trends were in the order of Cd>Cr>Pb while the removal efficiency of selected algae species was in the order of C. glomerata, O. westii, V. debaryana and Z. insigne. The bioaccumulation capacity of C. glomerata, V. debaryana and Z. insigne was observed for different HM. Removal of HM was higher with low levels of HM in aqueous solutions. The results indicated that C. glomerata, O. westii, V. debaryana and Z. insigne had significant (P ≤0.01) diverse bioaccumulation capacity for Cr, Cd and Pb.

2018 ◽  
Vol 54 (2A) ◽  
pp. 259
Author(s):  
Tran Thi Huyen Nga

In this study, Phragmites australis (common reed) was transplanted into solutions added with different concentrations of Mn, Zn, Cd, Pb, and As for 30 days in the laboratory (10 days of incubation and repeated three times without changing the plant) to assess the removal of these metals and its accumulation in the plant. The results showed that high removal efficiency was achieved by growing P.australis. The highest daily removal rates of heavy metals and As were obtained after 1 day of new solution addition. The highest concentrations of Mn, Zn, Cd, Pb, and As in the plant roots were 3920, 1020, 90.9, 1350, and 183 mg kg–1 dry wt., respectively; those in the stems were 465, 108, 26.4, 227, and 74.0 mg kg–1 dry wt.; and those in the leaves were 716, 150, 18.1, 157, and 88.3 mg kg–1 dry wt. The results of this study indicated that P. australis has the ability to remove simultaneously these metals from water, making it a potential species for phytoremediation of wastewater from Pb-Zn mine.


Water ◽  
2020 ◽  
Vol 12 (3) ◽  
pp. 723 ◽  
Author(s):  
Marko Šolić ◽  
Snežana Maletić ◽  
Marijana Kragulj Isakovski ◽  
Jasmina Nikić ◽  
Malcolm Watson ◽  
...  

Functionalized multiwalled carbon nanotubes (MWCNTs) have drawn wide attention in recent years as novel materials for the removal of heavy metals from the aquatic media. This paper investigates the effect that the functionalization (oxidation) process duration time (3 h or 6 h) has on the ability of MWCNTs to treat water contaminated with low levels of Cu(II), Ni(II) and Cr(VI) (initial concentrations 0.5–5 mg L−1) and elucidates the adsorption mechanisms involved. Adsorbent characterization showed that the molar ratio of C and O in these materials was slightly lower for the oxMWCNT6h, due to the higher degree of oxidation, but the specific surface areas and mesopore volumes of these materials were very similar, suggesting that prolonging the functionalization duration had an insignificant effect on the physical characteristics of oxidized multiwalled carbon nanotubes (oxMWCNTs). Increasing the Ph of the solutions from Ph 2 to Ph 8 had a large positive impact on the removal of Cu(II) and Ni(II) by oxMWCNT, but reduced the adsorption of Cr(VI). However, the ionic strength of the solutions had far less pronounced effects. Coupled with the results of fitting the kinetics data to the Elowich and Weber–Morris models, we conclude that adsorption of Cu(II) and Ni(II) is largely driven by electrostatic interactions and surface complexation at the interface of the adsorbate/adsorbent system, whereas the slower adsorption of Cr(VI) on the oxMWCNTs investigated is controlled by an additional chemisorption step where Cr(VI) is reduced to Cr(III). Both oxMWCNT3h and oxMWCNT6h have high adsorption affinities for the heavy metals investigated, with adsorption capacities (expressed by the Freundlich coefficient KF) ranging from 1.24 to 13.2 (mg g−1)/(mg l−1)n, highlighting the great potential such adsorbents have in the removal of heavy metals from aqueous solutions.


2020 ◽  
Vol 184 ◽  
pp. 189-198
Author(s):  
Isha Shamshad ◽  
Sardar Khan ◽  
Said Muhammad ◽  
Muhammad Waqas

2019 ◽  
Vol 41 (2) ◽  
pp. 130-137
Author(s):  
Nguyen Thi Hoang Ha ◽  
Vu Thi Thom

Equisetum diffusum D. Don was transplanted into solutions added with different concentrations of Mn, Zn, Cd, Pb, and As for 30 days in the laboratory experiment to assess the removal of these metals and their accumulation in the plant. The highest removal efficiency of Mn, Zn, Cd, Pb, and As from solutions by E. diffusum was 99.6, 97.9, 77.5, 85.3, and 61.9%, respectively. The highest daily removal efficiencies of heavy metals were obtained after 1 day of new solution addition. The highest concentrations of Mn, Zn, Cd, Pb, and As in the plant roots were 7230, 1490, 174, 1170, and 274 mg/kg-DW, respectively; those in the shoots were 1960, 566, 33.9, 308, and 108 mg/kg-DW. The bioconcentration factor (BCF) values for Mn, Zn, Cd, Pb, and As were 496, 406, 702, 463, and 191, respectively. The results of this study indicate that E. diffusum has the ability to remove simultaneously these metals from water, making it a potential species for phytoremediation of water contaminated with multiple heavy metals.  


Author(s):  
Joshua O. Ighalo ◽  
Lois T. Arowoyele ◽  
Samuel Ogunniyi ◽  
Comfort A. Adeyanju ◽  
Folasade M. Oladipo-Emmanuel ◽  
...  

Background: The presence of pollutants in polluted water is not singularized hence pollutant species are constantly in competition for active sites during the adsorption process. A key advantage of competitive adsorption studies is that it informs on the adsorbent performance in real water treatment applications. Objective: This study aims to investigate the competitive adsorption of Pb(II), Cu(II), Fe(II) and Zn(II) using elephant grass (Pennisetum purpureum) biochar and hybrid biochar from LDPE. Method: The produced biochar was characterised by Scanning Electron Microscopy (SEM) and Fourier Transform Infrared Spectroscopy (FTIR). The effect of adsorption parameters, equilibrium isotherm modelling and parametric studies were conducted based on data from the batch adsorption experiments. Results: For both adsorbents, the removal efficiency was >99% over the domain of the entire investigation for dosage and contact time suggesting that they are very efficient for removing multiple heavy metals from aqueous media. It was observed that removal efficiency was optimal at 2 g/l dosage and contact time of 20 minutes for both adsorbent types. The Elovich isotherm and the pseudo-second order kinetic models were best-fit for the competitive adsorption process. Conclusion: The study was able to successfully reveal that biomass biochar from elephant grass and hybrid biochar from LDPE can be used as effective adsorbent material for the removal of heavy metals from aqueous media. This study bears a positive implication for environmental protection and solid waste management.


Author(s):  
Elias Costa de Souza ◽  
Alexandre Santos Pimenta ◽  
Alfredo José Ferreira da Silva ◽  
Paula Fabiane Pinheiro do Nascimento ◽  
Joshua O. Ighalo

2021 ◽  
Vol 97 ◽  
pp. 460-465
Author(s):  
M.S. Ahmed ◽  
T.M. Zewail ◽  
E-S.Z. El-Ashtoukhy ◽  
H.A. Farag ◽  
I.H. El Azab ◽  
...  

2019 ◽  
Vol 2019 ◽  
pp. 1-9
Author(s):  
Quang-Minh Nguyen ◽  
Duy-Cam Bui ◽  
Thao Phuong ◽  
Van-Huong Doan ◽  
Thi-Nham Nguyen ◽  
...  

The effect of copper, zinc, chromium, and lead on the anaerobic co-digestion of waste activated sludge and septic tank sludge in Hanoi was studied in the fermentation tests by investigating the substrate degradation, biogas production, and process stability at the mesophilic fermentation. The tested heavy metals were in a range of concentrations between 19 and 80 ppm. After the anaerobic tests, the TS, VS, and COD removal efficiency was 4.12%, 9.01%, and 23.78% for the Cu(II) added sample. Similarly, the efficiencies of the Zn(II) sample were 1.71%, 13.87%, and 16.1% and Cr(VI) efficiencies were 15.28%, 6.6%, and 18.65%, while the TS, VS, and COD removal efficiency of the Pb(II) added sample was recorded at 16.1%, 17.66%, and 16.03% at the concentration of 80 ppm, respectively. Therefore, the biogas yield also decreased by 36.33%, 31.64%, 31.64%, and 30.60% for Cu(II), Zn(II), Cr(VI), and Pb(II) at the concentration of 80 ppm, compared to the raw sample, respectively. These results indicated that Cu(II) had more inhibiting effect on the anaerobic digestion of the sludge mixture than Zn(II), Cr(VI), and Pb(II). The relative toxicity of these heavy metals to the co-digestion process was as follows: Cu (the most toxic) > Zn > Cr > Pb (the least toxic). The anaerobic co-digestion process was inhibited at high heavy metal concentration, which resulted in decreased removal of organic substances and produced biogas.


Sign in / Sign up

Export Citation Format

Share Document