Rehabilitation of Surgically Relocated Integrated Dental Implants With and Without Bone Morphogenesis Protein-2

2013 ◽  
Vol 39 (4) ◽  
pp. 409-415
Author(s):  
Gilbert Tremblay

In the following case report, three osseointegrated implants placed in a dysfunctional and nonaesthetic position were successfully relocated with innovative surgical techniques were followed by a comprehensive dental rehabilitation. The goal of this report is to communicate the surgical techniques used to successfully relocate dental implants rather than replace them. Two techniques were used for these implants relocation. One technique consisted of displacing the integrated implant with some similarity to the alveolar distraction osteogenesis but without using the distraction device. The second surgical technique involved the displacement of the 2 adjacent implants, similarly to the first approach, except that an osseoinductive molecule, recombinant human bone morphogenetic protein-2, was used for guided bone growth. It was possible to relocate dental implants within bone blocs and rehabilitate them to adopt new dental abilities by complying with bone regeneration parameters. However, advanced treatment planning with computerized tomography scans, parametric software, and stereolithography models as well as guided surgery and bone regeneration products were used.

Author(s):  
Karthikeyan Subramani ◽  
Reji Mathew ◽  
Hossein Hosseinkhani ◽  
Mohsen Hosseinkhani

This manuscript discusses peri-implantitis around dental implants and the current methodologies of surgical and non-surgical approaches towards treating peri-implantitis. Mechanical, chemical cleansing and reactivation of infected implant surface along with recent advances like the use of Laser and Photodynamic therapy (PDT) have also been reviewed in this literature. Bone regenerative treatment methods for the treatment of peri-implantitis using non-resorbable membranes (Guided Bone Regeneration), autogenous bone grafts and bone substitute materials with recombinant human bone morphogenetic protein-2 (rhBMP-2) and other growth factors have also been reviewed in this manuscript.


Materials ◽  
2019 ◽  
Vol 12 (15) ◽  
pp. 2435 ◽  
Author(s):  
So-Yeun Kim ◽  
Eun-Bin Bae ◽  
Jae-Woong Huh ◽  
Jong-Ju Ahn ◽  
Hyun-Young Bae ◽  
...  

It is important to obtain sufficient bone mass before implant placement on alveolar bone, and synthetic bone such as biphasic calcium phosphate (BCP) has been studied to secure this. This study used a BCP block bone with a specific structure of the three-dimensional (3D) hexahedron channel and coating with recombinant human bone morphogenetic protein-2 (rhBMP-2) impregnated carboxymethyl cellulose (CMC) was used to examine the enhancement of bone regeneration of this biomaterial in rat calvarial defect. After the preparation of critical-size calvarial defects in fifteen rats, defects were divided into three groups and were implanted with the assigned specimen (n = 5): Boneplant (untreated 3D hexahedron channeled BCP block), Boneplant/CMC (3D hexahedron channeled BCP block coated with CMC), and Boneplant/CMC/BMP (3D hexahedron channeled BCP block coated with CMC containing rhBMP-2). After 4 weeks, the volumetric, histologic, and histometric analyses were conducted to measure the newly formed bone. Histologically, defects in the Boneplant/CMC/BMP group were almost completely filled with new bone compared to the Boneplant and Boneplant/CMC groups. The new bone volume (P < 0.05) and area (P < 0.001) in the Boneplant/CMC/BMP group (20.12% ± 2.17, 33.79% ± 3.66) were much greater than those in the Boneplant (10.77% ± 4.8, 16.48% ± 9.11) and Boneplant/CMC (10.72% ± 3.29, 16.57% ± 8.94) groups, respectively. In conclusion, the 3D hexahedron channeled BCP block adapted rhBMP-2 with carrier CMC showed high possibility as an effective bone graft material.


2013 ◽  
Vol 84 (3) ◽  
pp. 360-370 ◽  
Author(s):  
Cristiane Ibanhes Polo ◽  
Júlio Leonardo Oliveira Lima ◽  
Leandro De Lucca ◽  
Christiano Borges Piacezzi ◽  
Maria da Graça Naclério-Homem ◽  
...  

2018 ◽  
Vol 2018 ◽  
pp. 1-9 ◽  
Author(s):  
Yoo-Kyung Sun ◽  
Jae-Kook Cha ◽  
Daniel Stefan Thoma ◽  
So-Ra Yoon ◽  
Jung-Seok Lee ◽  
...  

This study is designed to determine the effect of collagen membrane (CM) soaked with bone morphogenetic protein-2 (rhBMP-2) for the treatment of peri-implant dehiscence defects. Material and Methods. Three treatment groups were allocated at each defect in 5 dogs: (i) collagenated synthetic bone (OC) and CM soaked with rhBMP-2 (BMP group), (ii) OC and CM soaked with saline (nonBMP group), and (iii) no further treatment (control group). Titanium pins were used to stabilize the membranes in two dogs. Radiographic and histomorphometric analyses were performed 4 weeks later. Results. The median augmented volumes were 4.27 mm3, 6.24 mm3, and 2.75 mm3 in the BMP, nonBMP, and control groups, respectively; the corresponding median first bone-to-implant contact (fBIC) distances were 3.25 mm, 3.08 mm, and 2.56 mm (P>0.05). The placement of pins (with the BMP and nonBMP groups pooled) significantly improved bone regeneration: the augmented volumes were 17.60 mm3 with pins and 3.68 mm3 without pins (P=0.024), with corresponding fBIC distances of 2.25 mm and 3.31 mm, respectively (P<0.001). Conclusions. The addition of rhBMP-2 to CM failed to improve bone regeneration of peri-implant dehiscence defects compared to using an unsoaked CM after 4 weeks. However, the stabilization of CMs using pins positively influenced the outcomes.


Sign in / Sign up

Export Citation Format

Share Document