bone morphogenetic protein 9
Recently Published Documents


TOTAL DOCUMENTS

129
(FIVE YEARS 39)

H-INDEX

26
(FIVE YEARS 5)

2021 ◽  
Vol 11 ◽  
Author(s):  
Jordan A. Harry ◽  
Mark L. Ormiston

Breast cancer is the most common cancer affecting women and is the second leading cause of cancer related death worldwide. Angiogenesis, the process of new blood vessel development from pre-existing vasculature, has been implicated in the growth, progression, and metastasis of cancer. Tumor angiogenesis has been explored as a key therapeutic target for decades, as the blockade of this process holds the potential to reduce the oxygen and nutrient supplies that are required for tumor growth. However, many existing anti-angiogenic approaches, such as those targeting Vascular Endothelial Growth Factor, Notch, and Angiopoietin signaling, have been associated with severe side-effects, limited survival advantage, and enhanced cancer regrowth rates. To address these setbacks, alternative pathways involved in the regulation of tumor angiogenesis are being explored, including those involving Bone Morphogenetic Protein-9 signaling, the Sonic Hedgehog pathway, Cyclooxygenase-2, p38-mitogen-activated protein kinase, and Chemokine Ligand 18. This review article will introduce the concept of tumor angiogenesis in the context of breast cancer, followed by an overview of current anti-angiogenic therapies, associated resistance mechanisms and novel therapeutic targets.


2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Yunyuan Zhang ◽  
Xuran Jing ◽  
Zhongzhu Li ◽  
Qingwu Tian ◽  
Qing Wang ◽  
...  

Abstract Background Bone morphogenetic protein 9 (BMP9) has been identified as a crucial inducer of osteoblastic differentiation in mesenchymal stem cells (MSCs). Although microRNAs (miRNAs) are known to play a role in MSC osteogenesis, the mechanisms of action of miRNAs in BMP9-induced osteoblastic differentiation remain poorly understood. Methods In this study, we investigate the possible role of the miR17-92 cluster in the BMP9-induced osteogenic differentiation of MSCs by using both in vitro and in vivo bone formation assays. Results The results show that miR-17, a member of the miR17-92 cluster, significantly impairs BMP9-induced osteogenic differentiation. This impairment is effectively rescued by a miR-17 sponge, an antagomiR sequence against miR-17. Using TargetScan and the 3′-untranslated region luciferase reporter assays, we show that the direct target of miR-17 is the retinoblastoma gene (RB1), a gene that is pivotal to osteoblastic differentiation. We also confirm that RB1 is essential for the miR-17 effects on osteogenesis. Conclusion Our results indicate that miR-17 expression impairs normal osteogenesis by downregulating RB1 expression and significantly inhibiting the function of BMP9.


Author(s):  
Fu-Shu Li ◽  
Pei-Pei Li ◽  
Ling Li ◽  
Yan Deng ◽  
Ying Hu ◽  
...  

Bone morphogenetic protein 9 (BMP9) is one of the most efficacious osteogenic cytokines. PTEN and Wnt10b are both implicated in regulating the osteogenic potential of BMP9, but the potential relationship between them is unknown. In this study, we determined whether PTEN could reduce the expression of Wnt10b during the osteogenic process initialized by BMP9 in mesenchymal stem cells (MSCs) and the possible molecular mechanism. We find that PTEN is inhibited by BMP9 in MSCs, but Wnt10b is increased simultaneously. The BMP9-induced osteogenic markers are reduced by PTEN but increased by silencing PTEN. The effects of knockdown PTEN on elevating BMP9-induced osteogenic markers are almost abolished by knockdown of Wnt10b. On the contrary, the BMP9-increased ALP activities and mineralization are both inhibited by PTEN but almost reversed by the combination of Wnt10b. Bone masses induced by BMP9 are enhanced by knockdown of PTEN, which is reduced by knockdown of Wnt10b. The BMP9-increased Wnt10b is decreased by PTEN but enhanced by knockdown of PTEN. Meanwhile, the BMP9-induced Wnt10b is also reduced by a PI3K-specific inhibitor (Ly294002) or rapamycin, respectively. The BMP9-induced phosphorylation of CREB or Smad1/5/9 is also reduced by PTEN, but enhanced by PTEN knockdown. In addition, p-CREB interacts with p-Smad1/5/9 in MSCs, and p-CREB or p-Smad1/5/9 are both enriched at the promoter region of Wnt10b. Our findings indicate that inhibitory effects of PTEN on BMP9's osteogenic potential may be partially mediated through decreasing the expression of Wnt10b via the disturbance of interaction between CREB and BMP/Smad signaling.


2021 ◽  
Vol 11 ◽  
Author(s):  
Qin-Juan Sun ◽  
Ling-Yan Cai ◽  
Jie Jian ◽  
Ya-Lu Cui ◽  
Chen-Kai Huang ◽  
...  

Background and Aims: It’s reported that bone morphogenetic protein 9 (BMP9) played an important role in lipid and glucose metabolism, but the role of BMP9 in nonalcoholic fatty liver disease (NAFLD) is unclear. Here, we evaluated the therapeutic efficacy of recombined BMP9 in NAFLD mice and investigated the potential mechanism.Methods: The effects of recombinant BMP9 on NAFLD were assessed in HFD-induced NAFLD mice. C57BL/6 mice were administrated with high-fat diet (HFD) for 12 weeks. In the last 4 weeks, mice were treated with PBS or recombined BMP9 once daily. Insulin sensitivity was evaluated by glucose tolerance test (GTT) and insulin tolerance test (ITT) at the end of the 12th week. Then NAFLD related indicators were assessed by a variety of biological methods, including histology, western blotting, real-time PCR, RNA-seq and assay for transposase-accessible chromatin using sequencing (ATAC-seq) analyses.Results: BMP9 reduced obesity, improved glucose metabolism, alleviated hepatic steatosis and decreased liver macrophages infiltration in HFD mice. RNA-seq showed that Cers6, Cidea, Fabp4 involved in lipid and glucose metabolism and Fos, Ccl2, Tlr1 involved in inflammatory response downregulated significantly after BMP9 treatment in HFD mouse liver. ATAC-seq showed that chromatin accessibility on promoters of Cers6, Fabp4, Ccl2 and Fos decreased after BMP9 treatment in HFD mouse liver. KEGG pathway analysis of dysregulated genes in RNA-seq and integration of RNA-seq and ATAC-seq showed that TNF signaling pathway and Toll-like receptor signaling pathway decreased in BMP9 treated HFD mouse liver.Conclusion: Our data revealed that BMP9 might alleviate NAFLD via improving glucose and lipid metabolism, decreasing inflammatory response and reshaping chromatin accessibility in HFD mouse liver. BMP9 downregulate genes related to lipid metabolism, glucose metabolism and inflammation expression, at least partially via decreasing promoter chromatin accessibility of Cers6, Fabp4, Fos and Tlr1. BMP9 may also reduce the expression of liver Ccl2, thereby changing the number or composition of liver macrophages, and ultimately reducing liver inflammation. The effect of BMP9 on NAFLD might be all-round, and not limit to lipid and glucose metabolism. Therefore, the underlying mechanism needs to be studied in detail further.


2021 ◽  
Vol 22 (2) ◽  
pp. 767
Author(s):  
Emerito Carlos Rodríguez-Merchán

Between 5 and 10 percent of fractures do not heal, a condition known as nonunion. In clinical practice, stable fracture fixation associated with autologous iliac crest bone graft placement is the gold standard for treatment. However, some recalcitrant nonunions do not resolve satisfactorily with this technique. For these cases, biological alternatives are sought based on the molecular mechanisms of bone healing, whose most recent findings are reviewed in this article. The pro-osteogenic efficacy of morin (a pale yellow crystalline flavonoid pigment found in old fustic and osage orange trees) has recently been reported, and the combined use of bone morphogenetic protein-9 (BMP9) and leptin might improve fracture healing. Inhibition with methyl-piperidino-pyrazole of estrogen receptor alpha signaling delays bone regeneration. Smoking causes a chondrogenic disorder, aberrant activity of the skeleton’s stem and progenitor cells, and an intense initial inflammatory response. Smoking cessation 4 weeks before surgery is therefore highly recommended. The delay in fracture consolidation in diabetic animals is related to BMP6 deficiency (35 kDa). The combination of bioceramics and expanded autologous human mesenchymal stem cells from bone marrow is a new and encouraging alternative for treating recalcitrant nonunions.


Sign in / Sign up

Export Citation Format

Share Document