scholarly journals Flexural vibration of coupled double-walled Carbon nanotubes conveying fluid under thermo-magnetic fields based on strain gradient theory

Author(s):  
Ali Ghorbanpour Arani ◽  
Pedram Dashti ◽  
Saeed Amir ◽  
Mohsen Yousefi
2018 ◽  
Vol 32 (24) ◽  
pp. 1850291
Author(s):  
Yugang Tang ◽  
Ying Liu

In this paper, the influence of van der Waals force on the wave propagation in viscoelastic double-walled carbon nanotubes (DWCNTs) is investigated. The governing equations of wave motion are derived based on the nonlocal strain gradient theory and double-walled Timoshenko beam model. The effects of viscosity, van der Waals force, as well as size effects on the wave propagation in DWCNTs are clarified. The results show that effects of van der Waals force on waves in inner and outer layers of DWCNTs are different. Flexural wave (FW) in outer layer and shear wave (SW) in inner layer are sensitive to van der Waals force, and display new phenomena. This new finding may provide some useful guidance in the acoustic design of nanostructures with DWCNTs as basic elements.


2013 ◽  
Vol 135 (5) ◽  
Author(s):  
R. Ansari ◽  
R. Gholami ◽  
S. Ajori

In the current study, the torsional vibration of carbon nanotubes is examined using the strain gradient theory and molecular dynamic simulations. The model developed based on this gradient theory enables us to interpret size effect through introducing material length scale parameters. The model accommodates the modified couple stress and classical models when two or all material length scale parameters are set to zero, respectively. Using Hamilton's principle, the governing equation and higher-order boundary conditions of carbon nanotubes are obtained. The generalized differential quadrature method is utilized to discretize the governing differential equation of the present model along with two boundary conditions. Then, molecular dynamic simulations are performed for a series of carbon nanotubes with different aspect ratios and boundary conditions, the results of which are matched with those of the present strain gradient model to extract the appropriate value of the length scale parameter. It is found that the present model with properly calibrated value of length scale parameter has a good capability to predict the torsional vibration behavior of carbon nanotubes.


2013 ◽  
Vol 46 (40) ◽  
pp. 405101 ◽  
Author(s):  
Mir Masoud Seyyed Fakhrabadi ◽  
Abbas Rastgoo ◽  
Mohammad Taghi Ahmadian

Sign in / Sign up

Export Citation Format

Share Document