scholarly journals Atmospheric Dispersion Simulations for Estimating Radiation Dose to the Public

2021 ◽  
pp. 47-55
Author(s):  
Osamu Kurihara
2016 ◽  
Vol 2016 ◽  
pp. 1-6 ◽  
Author(s):  
Bo Cao ◽  
Junxiao Zheng ◽  
Yixue Chen

Atmospheric dispersion modeling and radiation dose calculations have been performed for a hypothetical AP1000 SGTR accident by HotSpot code 3.03. TEDE, the respiratory time-integrated air concentration, and the ground deposition are calculated for various atmospheric stability classes, Pasquill stability categories A–F with site-specific averaged meteorological conditions. The results indicate that the maximum plume centerline ground deposition value of1.2E+2 kBq/m2occurred at about 1.4 km and the maximum TEDE value of1.41E-05 Sv occurred at 1.4 km from the reactor. It is still far below the annual regulatory limits of 1 mSv for the public as set in IAEA Safety Report Series number 115. The released radionuclides might be transported to long distances but will not have any harmful effect on the public.


Biomolecules ◽  
2019 ◽  
Vol 9 (12) ◽  
pp. 856 ◽  
Author(s):  
Jan Aaseth ◽  
Valeria Marina Nurchi ◽  
Ole Andersen

Follow-up studies after the Chernobyl and Fukushima accidents have shown that 137Cs and 131I made up the major amount of harmful contaminants in the atmospheric dispersion and fallout. Other potential sources for such radionuclide exposure may be terrorist attacks, e.g., via contamination of drinking water reservoirs. A primary purpose of radionuclide mobilization is to minimize the radiation dose. Rapid initiation of treatment of poisoned patients is imperative after a contaminating event. Internal contamination with radioactive material can expose patients to prolonged radiation, thus leading to short- and long-term clinical consequences. After the patient’s emergency conditions are addressed, the treating physicians and assisting experts should assess the amount of radioactive material that has been internalized. This evaluation should include estimation of the radiation dose that is delivered and the specific radionuclides inside the body. These complex assessments warrant the reliance on a multidisciplinary approach that incorporates regional experts in radiation medicine and emergencies. Regional hospitals should have elaborated strategies for the handling of radiation emergencies. If radioactive cesium is a significant pollutant, Prussian blue is the approved antidote for internal detoxification. Upon risks of radioiodine exposure, prophylactic or immediate treatment with potassium iodide tablets is recommended. Chelators developed from calcium salts have been studied for gastrointestinal trapping and enhanced mobilization after strontium exposure.


2020 ◽  
Vol 21 (2) ◽  
pp. 53
Author(s):  
Elshaday S.B Siregar ◽  
Gusti Ngurah Sutapa ◽  
I Wayan Balik Sudarsana

CT scan is widely used to diagnose the inside of the human body, so supervision is needed to ensure the health and safety of workers, patients and the public. One surveillance that can be done is to analyze the radiation dose of the patient on CT scan with the application of Si-INTAN. Data processing of the results of CT scan of the head, thorax and abdomen for ages 0-4 years, 5-14 years and ? 15 years using the Si-INTAN application. From the results of the data processing, the highest DRL DLP value and CTDIVOL values were obtained, for CT scan heads were 1732,8 mGycm and 31,92 mGy, the CT scan of the thorax was 2450,78 mGycm and 19,36 mGy, and for CT Abdominal Scans were 3968,85 mGycm and 19,35 mGy.


2019 ◽  
Vol 184 (3-4) ◽  
pp. 302-306
Author(s):  
Aishath Nadhiya ◽  
Mayeen Uddin Khandaker ◽  
Sultan Mahmud ◽  
Mudassir Hassan Yarima

Abstract Recognising the consumption of tuna fish as a major foodstuff in Maldivian diet, the presence of naturally occurring radionuclides in Yellowfin and Skipjack tuna are determined by using HPGe gamma-ray spectrometry to evaluate the health hazards to Maldivians. The samples were collected from different atolls of Maldives adjacent to the coastal waters of Indian Ocean. The activity concentrations (Bq kg−1) in Yellowfin tuna for 226Ra, 232Th and 40K are in the ranges of 4.2 ± 1.8–10.5 ± 1.1, 1.3 ± 0.3–3.2 ± 0.7 and 589 ± 29–697 ± 34, respectively while in Skipjack tuna the respective ranges are 3.9 ± 0.5–13.2 ± 1.1, 1.3 ± 0.3–2.7 ± 0.6 and 511 ± 28–681 ± 35. The committed effective dose (mean 263 μSv y−1) received by an individual due to the dietary intake of Yellowfin tuna falling below the UNSCEAR referenced global internal dose limit of 290 μSv y−1; while for Skipjack tuna, the estimated dose (mean 365 μSv y−1) exceeds the world average limiting value. The carcinogenic risk was found to be well below the ICRP referenced acceptable limit of 2.5 × 10−3. The present study indicates that the radiation dose to Maldivian via the consumption of Yellowfin tuna poses an insignificant threat to the public health. However, prolonged consumption of Skipjack tuna fish from the studied areas may pose a cumulative risk to the public health.


2006 ◽  
Vol 985 ◽  
Author(s):  
Charles W. Forsberg ◽  
Leslie R. Dole

ABSTRACTMultipurpose transport, aging, and disposal casks are needed for the management of spent nuclear fuel (SNF). Self-shielded cermet casks can outperform current SNF casks because of the superior properties of cermets, which consist of encapsulated hard ceramic particulates dispersed in a continuous ductile metal matrix to produce a strong high-integrity, high-thermal-conductivity cask.A multiyear, multinational development and testing program has been developing cermet SNF casks made of steel, depleted uranium dioxide, and other materials. Because cermets are the traditional material of construction for armor, cermet casks can provide superior protection against assault. For disposal, cermet waste packages (WPs) with appropriate metals and ceramics can buffer the local geochemical environment to (1) slow degradation of SNF, (2) reduce water flow though the degraded WP, (3) sorb neptunium and other radionuclides that determine the ultimate radiation dose to the public from the repository, and (4) contribute to long-term nuclear criticality control. Finally, new cermet cask fabrication methods have been partly developed to manufacture the casks with the appropriate properties. The results of this work are summarized with references to the detailed reports.


2019 ◽  
Vol 96 (9) ◽  
pp. 827-832 ◽  
Author(s):  
Sergey M. Shinkarev ◽  
A. S. Samoylov ◽  
E. O. Granovskaya ◽  
E. A. Korneva ◽  
B. A. Kukhta ◽  
...  

Purpose. To present results of the comparative analysis of the contribution of short-lived radioiodines to the thyroid radiation dose (TRD) in the population after two severe radiation accidents at nuclear reactors: the Chernobyl accident (1986) and the Fukushima accident (2011). Material and methods. The contribution of short-lived radioiodines to the TRD is expressed in fractions of the TRD from 131I (the main dose forming radionuclide). This contribution takes into account the ratio between doses from inhalation and ingestion intake of 131I, the ratios between dose factors of the expected dose to the thyroid gland in the case of inhalation and ingestion intake of iodine and tellurium isotopes, the ratios between time-integrated concentration of iodine and tellurium isotopes at the ground-level air and in foodstuffs (milk). Results. The typical contribution of short-lived radioiodines to TRD for the population accounts of few percent of dose to the thyroid gland from 131I following the Chernobyl accident as on March 15, 2011, the day of the main fallout after the Fukushima accident - within 15%. For both accidents the leading role among the short-lived radioiodines in terms of dose to the thyroid for the public belongs to 133I and 132I (due to the intake of 132Te and its radioactive decay to 132I in the body). Conclusion. Significant differences in estimates of the typical contribution of short-lived radioiodines to TRD for the population after two considered accidents can be explained by differences in the dominant pathways of the intake of radioiodine by population. The dominant pathway for the vast majority of the population in the contaminated areas following the Chernobyl accident was ingestion intake with locally produced cow’s milk. Following the Fukushima accident the dominant pathway was inhalation intake, because the Japanese authorities were able to quickly prevent the intake of radioiodine with foodstuffs.


Sign in / Sign up

Export Citation Format

Share Document