Cermet Spent Nuclear Fuel Casks and Waste Packages

2006 ◽  
Vol 985 ◽  
Author(s):  
Charles W. Forsberg ◽  
Leslie R. Dole

ABSTRACTMultipurpose transport, aging, and disposal casks are needed for the management of spent nuclear fuel (SNF). Self-shielded cermet casks can outperform current SNF casks because of the superior properties of cermets, which consist of encapsulated hard ceramic particulates dispersed in a continuous ductile metal matrix to produce a strong high-integrity, high-thermal-conductivity cask.A multiyear, multinational development and testing program has been developing cermet SNF casks made of steel, depleted uranium dioxide, and other materials. Because cermets are the traditional material of construction for armor, cermet casks can provide superior protection against assault. For disposal, cermet waste packages (WPs) with appropriate metals and ceramics can buffer the local geochemical environment to (1) slow degradation of SNF, (2) reduce water flow though the degraded WP, (3) sorb neptunium and other radionuclides that determine the ultimate radiation dose to the public from the repository, and (4) contribute to long-term nuclear criticality control. Finally, new cermet cask fabrication methods have been partly developed to manufacture the casks with the appropriate properties. The results of this work are summarized with references to the detailed reports.

1997 ◽  
Vol 506 ◽  
Author(s):  
K.W. Dormuth ◽  
P.A. Gillespie ◽  
S.H. Whitaker

ABSTRACTA federal Environmental Assessment Panel has completed public hearings on the proposed concept for geological disposal of Canada's nuclear fuel waste. The Panel will make recommendations to assist the governments of Canada and Ontario in reaching decisions on the acceptability of the proposed concept and on the steps that must be taken to ensure the safe long-term management of nuclear fuel waste in Canada. It is instructive to review the background to the public hearings, to consider the issues that have been important in the public review, and to reflect on the opposing points of view presented at the hearings.


2017 ◽  
Vol 153 ◽  
pp. 07035 ◽  
Author(s):  
Mikhail Ternovykh ◽  
Georgy Tikhomirov ◽  
Ivan Saldikov ◽  
Alexander Gerasimov

2019 ◽  
Vol 96 (9) ◽  
pp. 868-874
Author(s):  
O. A. Kochetkov ◽  
A. P. Panfilov ◽  
V. Yu. Usoltsev ◽  
Vladimir N. Klochkov ◽  
S. M. Shinkarev ◽  
...  

This article covers basic issues of the radiation protection in nuclear industry. It contains an overview of history of the national nuclear industry including the creation of industry-specific facilities (research centers, medical units etc.). Main stages of the creating the regulatory system for radiation protection, starting from the beginning of the industrial radiation protection, stages of introducing exposure limits and implementation of the radiation protection system in international documents are described. In 1996, for the first time, radiation protection requirements in Russia were documented in the form of the Federal Law 3-FZ of 09.01.1996 “Radiation Protection of the Public". A new stage of updating the global methodological foundation of radiation protection began in 2007. IRCP recommendations of 2007 moved from the legacy practice and intervention approach focused on the process to the approach based on characteristics of exposure situation. The evolvement of new technologies (specifically, in the field of reactor engineering and used nuclear fuel) in recent years requires a special focus on the safety of the personnel and the public. This stipulates the necessity of the appropriate radiation protection support of activities for the safe implementation of modern technologies. Handling of spent nuclear fuel and generated radioactive wastes, safe decommissioning of radiation hazardous facilities, radiation protection during operation of radiation facilities in nonstandard conditions are all the issues requiring specific examination. Regulatory and procedural documents on radiation protection of the personnel and the public during development and implementation of new technologies have been developed and approved as a result of long-term work of scientists and other professionals.


MRS Advances ◽  
2016 ◽  
Vol 1 (62) ◽  
pp. 4163-4168
Author(s):  
E. González-Robles ◽  
M. Herm ◽  
V. Montoya ◽  
N. Müller ◽  
B. Kienzler ◽  
...  

ABSTRACTThe long-term behavior of the UO2 fuel matrix under conditions of the Belgian “Supercontainer design” was investigated by dissolution tests of high burn-up spent nuclear fuel (SNF) in high alkaline solution under 40 bar of (Ar + 8%H2) atmosphere. Four fragments of SNF, obtained from a pellet previously leached during two years, were exposed to young cement water with Ca (YCWCa) under 3.2 bar H2 partial pressure in four single/independent autoclave experiments for a period of 59, 182, 252 and 341 days, respectively. After a decrease of the concentration of dissolved 238U, which is associated with a reduction of U(VI) to U(IV), the concentration of 238U in solution is constant in the experiments running for 252 and 341 days. These observations indicate an inhibition of the matrix dissolution due to the presence of H2. A slight increase in the concentration of 90Sr and 137Cs in the aqueous solution indicates that there is still dissolution of the grain boundaries. These findings are similar to those reported for spent nuclear fuel corrosion in synthetic near neutral pH solutions.


Energy ◽  
2019 ◽  
Vol 170 ◽  
pp. 978-985 ◽  
Author(s):  
R. Poškas ◽  
V. Šimonis ◽  
H. Jouhara ◽  
P. Poškas

2003 ◽  
Vol 807 ◽  
Author(s):  
Peter Wikberg ◽  
Kaj Ahlbom ◽  
Olle Olsson

ABSTRACTThe Swedish nuclear waste management programme has entered the site investigation phase. Early 2002 SKB received permission from the municipalities of Östhammar and Oskarshamn to perform site investigations for a potential deep geologic repository for spent nuclear fuel. The goal of the site investigation phase is to obtain a permit to build the deep repository for spent nuclear fuel. In parallel with the investigations, consultations will be held with county administrative boards, regulatory authorities and municipalities, as well as with members of the public.


Author(s):  
Tobias Lindborg ◽  
Ulrik Kautsky ◽  
Lars Brydsten

The Swedish Nuclear Fuel and Waste Management Co., (SKB), pursues site investigations for the final repository for spent nuclear fuel at two sites in the south eastern part of Sweden, the Forsmark- and the Laxemar site (figure 1). Data from the two site investigations are used to build site descriptive models of the areas. These models describe the bedrock and surface system properties important for designing the repository, the environmental impact assessment, and the long-term safety, i.e. up to 100,000 years, in a safety assessment. In this paper we discuss the methodology, and the interim results for, the landscape model, used in the safety assessment to populate the Forsmark site in the numerical dose models. The landscape model is built upon ecosystem types, e.g. a lake or a mire, (Biosphere Objects) that are connected in the landscape via surface hydrology. Each of the objects have a unique set of properties derived from the site description. The objects are identified by flow transport modeling, giving discharge points at the surface for all possible flow paths from the hypothetical repository in the bedrock. The landscape development is followed through time by using long-term processes e.g. shoreline displacement and sedimentation. The final landscape model consists of a number of maps for each chosen time period and a table of properties that describe the individual objects which constitutes the landscape. The results show a landscape that change over time during 20,000 years. The time period used in the model equals the present interglacial and can be used as an analogue for a future interglacial. Historically, the model area was covered by sea, and then gradually changes into a coastal area and, in the future, into a terrestrial inland landscape. Different ecosystem types are present during the landscape development, e.g. sea, lakes, agricultural areas, forest and wetlands (mire). The biosphere objects may switch from one ecosystem type to another during the modeled time period, from sea to lake, and from lake to mire and finally, some objects are transformed into agricultural area due to favorable farming characteristics.


Sign in / Sign up

Export Citation Format

Share Document