scholarly journals Multi Comm_Plus: A Community Detection System for Identification of Community in Multi-Dimensional Networks

Author(s):  
Dhanya Sudhakaran ◽  
Shini Renjith

Community detection is a common problem in graph and big data analytics. It consists of finding groups of densely connected nodes with few connections to nodes outside of the group. In particular, identifying communities in large-scale networks is an important task in many scientific domains. Community detection algorithms in literature proves to be less efficient, as it leads to generation of communities with noisy interactions. To address this limitation, there is a need to develop a system which identifies the best community among multi-dimensional networks based on relevant selection criteria and dimensionality of entities, thereby eliminating the noisy interactions in a real-time environment.

Electronics ◽  
2021 ◽  
Vol 10 (19) ◽  
pp. 2322
Author(s):  
Xiaofei Ma ◽  
Xuan Liu ◽  
Xinxing Li ◽  
Yunfei Ma

With the rapid development of the Internet of Things (IoTs), big data analytics has been widely used in the sport field. In this paper, a light-weight, self-powered sensor based on a triboelectric nanogenerator for big data analytics in sports has been demonstrated. The weight of each sensing unit is ~0.4 g. The friction material consists of polyaniline (PANI) and polytetrafluoroethylene (PTFE). Based on the triboelectric nanogenerator (TENG), the device can convert small amounts of mechanical energy into the electrical signal, which contains information about the hitting position and hitting velocity of table tennis balls. By collecting data from daily table tennis training in real time, the personalized training program can be adjusted. A practical application has been exhibited for collecting table tennis information in real time and, according to these data, coaches can develop personalized training for an amateur to enhance the ability of hand control, which can improve their table tennis skills. This work opens up a new direction in intelligent athletic facilities and big data analytics.


2021 ◽  
Author(s):  
R. Salter ◽  
Quyen Dong ◽  
Cody Coleman ◽  
Maria Seale ◽  
Alicia Ruvinsky ◽  
...  

The Engineer Research and Development Center, Information Technology Laboratory’s (ERDC-ITL’s) Big Data Analytics team specializes in the analysis of large-scale datasets with capabilities across four research areas that require vast amounts of data to inform and drive analysis: large-scale data governance, deep learning and machine learning, natural language processing, and automated data labeling. Unfortunately, data transfer between government organizations is a complex and time-consuming process requiring coordination of multiple parties across multiple offices and organizations. Past successes in large-scale data analytics have placed a significant demand on ERDC-ITL researchers, highlighting that few individuals fully understand how to successfully transfer data between government organizations; future project success therefore depends on a small group of individuals to efficiently execute a complicated process. The Big Data Analytics team set out to develop a standardized workflow for the transfer of large-scale datasets to ERDC-ITL, in part to educate peers and future collaborators on the process required to transfer datasets between government organizations. Researchers also aim to increase workflow efficiency while protecting data integrity. This report provides an overview of the created Data Lake Ecosystem Workflow by focusing on the six phases required to efficiently transfer large datasets to supercomputing resources located at ERDC-ITL.


Author(s):  
Amir A. Khwaja

Big data explosion has already happened and the situation is only going to exacerbate with such a high number of data sources and high-end technology prevalent everywhere, generating data at a frantic pace. One of the most important aspects of big data is being able to capture, process, and analyze data as it is happening in real-time to allow real-time business decisions. Alternate approaches must be investigated especially consisting of highly parallel and real-time computations for big data processing. The chapter presents RealSpec real-time specification language that may be used for the modeling of big data analytics due to the inherent language features needed for real-time big data processing such as concurrent processes, multi-threading, resource modeling, timing constraints, and exception handling. The chapter provides an overview of RealSpec and applies the language to a detailed big data event recognition case study to demonstrate language applicability to big data framework and analytics modeling.


Sign in / Sign up

Export Citation Format

Share Document