scholarly journals The dynamic role of ridges in a Beta-plane channel : towards understanding the dynamics of large scale circulation in the Southern Ocean

1993 ◽  
Author(s):  
Liping Wang
2013 ◽  
Vol 52 (7) ◽  
pp. 1554-1560 ◽  
Author(s):  
Andrea Toreti ◽  
Michelle Schneuwly-Bollschweiler ◽  
Markus Stoffel ◽  
Jürg Luterbacher

AbstractThis article addresses the role of large-scale circulation and thermodynamical features in the release of past debris flows in the Swiss Alps by using classification algorithms, potential instability, and convective time scale. The study is based on a uniquely dense dendrogeomorphic time series of debris flows covering the period 1872–2008, reanalysis data, instrumental time series, and gridded hourly precipitation series (1992–2006) over the area. Results highlight the crucial role of synoptic and mesoscale forcing as well as of convective equilibrium on triggering rainfalls. Two midtropospheric synoptic patterns favor anomalous southwesterly flow toward the area and high potential instability. These findings imply a certain degree of predictability of debris-flow events and can therefore be used to improve existing alert systems.


2015 ◽  
Vol 112 (37) ◽  
pp. 11473-11477 ◽  
Author(s):  
Usama Anber ◽  
Pierre Gentine ◽  
Shuguang Wang ◽  
Adam H. Sobel

The diurnal and seasonal water cycles in the Amazon remain poorly simulated in general circulation models, exhibiting peak evapotranspiration in the wrong season and rain too early in the day. We show that those biases are not present in cloud-resolving simulations with parameterized large-scale circulation. The difference is attributed to the representation of the morning fog layer, and to more accurate characterization of convection and its coupling with large-scale circulation. The morning fog layer, present in the wet season but absent in the dry season, dramatically increases cloud albedo, which reduces evapotranspiration through its modulation of the surface energy budget. These results highlight the importance of the coupling between the energy and hydrological cycles and the key role of cloud albedo feedback for climates over tropical continents.


2016 ◽  
Vol 29 (7) ◽  
pp. 2511-2527 ◽  
Author(s):  
Ruidan Chen ◽  
Riyu Lu

Abstract Previous studies have suggested that, because of its particular location on the southeastern lee side of mountains, extreme heat (EH) over western north China (WNC) is affected by the foehn phenomenon. In this study, the EH days during summer over this region are categorized into foehn-favorable EH and no-foehn EH, according to whether there are anomalous northwesterlies over mountains, and composite analyses are performed on them. The analyzed results indicate that the no-foehn EH is characterized by an anticyclonic anomaly and a large-scale higher surface air temperature, while the foehn-favorable EH is featured by a cyclonic anomaly to the northeast and a localized higher temperature. Associated with the cyclonic anomaly, northwesterlies prevail over the mountain surface and provide a favorable environment for the occurrence of the foehn effect over WNC, which is located on the southeastern lee side of mountains. That is, both cyclonic and anticyclonic anomalies can induce EH over WNC (i.e., foehn-favorable EH and no-foehn EH, respectively). Further investigation indicates that large-scale cyclonic and anticyclonic anomalies tend to favor local descent and ascent anomalies over the lee side, respectively, through interaction with the particular terrain. Therefore, large-scale circulations and local terrain-induced winds play an offsetting role in affecting the surface air temperatures over WNC, and EH occurs when anomalous large-scale anticyclone or terrain-induced descent dominate. This study implies that attention should be paid to not only the upper-level/large-scale circulations but also to their impact on lower-level/local winds for temperature variability over the places with great topographic relief worldwide.


2014 ◽  
Vol 740 ◽  
pp. 312-341 ◽  
Author(s):  
Nikolaos A. Bakas ◽  
Petros J. Ioannou

AbstractPlanetary turbulent flows are observed to self-organize into large-scale structures such as zonal jets and coherent vortices. One of the simplest models of planetary turbulence is obtained by considering a barotropic flow on a beta-plane channel with turbulence sustained by random stirring. Nonlinear integrations of this model show that as the energy input rate of the forcing is increased, the homogeneity of the flow is broken with the emergence of non-zonal, coherent, westward propagating structures and at larger energy input rates by the emergence of zonal jets. We study the emergence of non-zonal coherent structures using a non-equilibrium statistical theory, stochastic structural stability theory (S3T, previously referred to as SSST). S3T directly models a second-order approximation to the statistical mean turbulent state and allows the identification of statistical turbulent equilibria and study of their stability. Using S3T, the bifurcation properties of the homogeneous state in barotropic beta-plane turbulence are determined. Analytic expressions for the zonal and non-zonal large-scale coherent flows that emerge as a result of structural instability are obtained. Through numerical integrations of the S3T dynamical system, it is found that the unstable structures equilibrate at finite amplitude. Numerical simulations of the nonlinear equations confirm the characteristics (scale, amplitude and phase speed) of the structures predicted by S3T.


2020 ◽  
Author(s):  
Zhen Liu ◽  
Massimo A. Bollasina ◽  
Laura J. Wilcox ◽  
José M. Rodríguez ◽  
Leighton A. Regayre

<p>Monsoon biases are long-standing and an important problem to solve because nearly half of the world’s population is affected by monsoon precipitation and circulation. The effect of local and remote circulation biases on Asian monsoon biases is studied with dynamical nudging using the latest version of the atmospheric component of the HadGEM3 model. Constraining the large-scale circulation substantially reduces oceanic biases in precipitation and circulation, particularly over the extra-tropics. Tropical wet biases may become even stronger because of unconstrained convection. By contrast, model biases over land are less sensitive to nudging due to the prominent role of local planetary boundary layer processes in modulating the low-level circulation. Nudging reduces the seasonal excess (deficit) precipitation over India in winter (summer) by reducing the local cyclonic (anti-cyclonic) biases. Constraining the circulation outside Asia demonstrates that the wet (dry) biases are mostly remotely (locally) controlled in winter (summer) over India. The monsoon biases over China show small changes with nudging, suggesting they are more thermodynamically driven. Monsoon variability is improved over India but not over China in nudged simulations. Despite the remaining errors in nudged simulations, our study suggests that nudging serves as a useful tool to disentangle the contribution of regional and remote circulation in generating the monsoon responses.</p>


Sign in / Sign up

Export Citation Format

Share Document