cloud albedo
Recently Published Documents


TOTAL DOCUMENTS

162
(FIVE YEARS 18)

H-INDEX

40
(FIVE YEARS 2)

2021 ◽  
Author(s):  
Richard Müller ◽  
Uwe Pfeifroth

Abstract. Accurate solar surface irradiance data (SSI) is a prerequisite for efficient planning and operation of solar energy sys- tems. Respective data are also essential for climate monitoring and analysis. Satellite-based SSI has grown in importance over the last few decades. However, a retrieval method is needed to relate the measured radiances at the satellite to the solar surface irradiance. In a widespread classical approach, these radiances are used directly to derive the effective cloud albedo (CAL) as basis for the estimation of the solar surface irradiance. This approach has been already introduced and discussed in the early 1980s. Various approaches are briefly discussed and analyzed, including an overview of open questions and opportunities for improvement. Special emphasis is placed on the reflection of fundamental physical laws and atmospheric measurement tech- niques. In addition, atmospheric input data and key applications are briefly discussed. It is concluded that the well established observational-based CAL approach is still an excellent choice for the retrieval of the cloud transmission. The coupling with Look-Up-Table based clear sky models enables the estimation of solar surface irradiance with high accuracy and homogeneity. This could explain why, despite its age, the direct CAL approach is still used by key players in energy meteorology and the climate community. For the clear sky input data it is recommended to use ECMWF forecast and reanalysis data.


2021 ◽  
Author(s):  
Jessica Danker ◽  
Odran Sourdeval ◽  
Isabel L. McCoy ◽  
Robert Wood ◽  
Anna Possner

Abstract. Marine stratocumuli are the most dominant cloud type by area coverage in the Southern Ocean (SO). They can be divided into different self-organized cellular morphological regimes known as open and closed mesoscale-cellular convec- tive (MCC) clouds. Open and closed cells are the two most frequent types of organizational regimes in the SO. Using the liDAR- raDAR (DARDAR) version 2 retrievals, we quantify 59 % of all MCC clouds in this region as mixed-phase clouds (MPCs) during a 4-year time period from 2007 to 2010. The net radiative effect of SO MCC clouds is governed by changes in cloud albedo. Both, cloud morphology and phase, have previously been shown to impact cloud albedo individually, but their interac- tions and their combined impact on cloud albedo remain unclear. Here, we investigate the relationships between cloud phase, organizational patterns, and their differences regarding their cloud radiative properties in the SO. The mixed-phase fraction, which is defined as the number of MPCs divided by the sum of MPC and supercooled liquid cloud (SLC) pixels, of all MCC clouds at a given cloud-top temperature (CTT) varies considerably between austral summer and winter. We further find that seasonal changes in cloud phase at a given CTT across all latitudes are largely independent of cloud morphology and are thus seemingly constrained by other external factors. Overall, our results show a stronger dependence of cloud phase on cloud-top height (CTH) than CTT for clouds below 2.5 km in altitude. Preconditioning through ice-phase processes in MPCs has been observed to accelerate individual closed to open cell transitions in extratropical stratocumuli. The hypothesis of preconditioning has been further substantiated in large-eddy simulations of open and closed MPCs. In this study, we do not find preconditioning to primarily impact climatological SO cloud mor- phology statistics. Meanwhile, in-cloud albedo analysis reveals stronger changes in open and closed cell albedo in SLCs than MPCs. In particular few optically thick (cloud optical thickness > 10) open cell stratocumuli are characterized as ice-free SLCs. Theses differences in in-cloud albedo are found to alter the cloud radiative effect in the SO by 12 W m−2 to 39 W m−2 depending on season and cloud phase.


2021 ◽  
Author(s):  
Jianhao Zhang ◽  
Xiaoli Zhou ◽  
Graham Feingold

Abstract. Quantification of the radiative adjustment of marine low-clouds to aerosol perturbations, regionally and globally, remains the largest source of uncertainty in assessing current and future climate. An important step towards quantifying the role of aerosol in modifying cloud radiative properties is to quantify the susceptibility of cloud albedo and liquid water path (LWP) to perturbations in cloud droplet number concentration (Nd). We use 10 years of space-borne observations from the polar-orbiting Aqua satellite, to quantify the albedo susceptibility of marine low-clouds over the northeast (NE) Pacific stratocumulus region to Nd perturbations. Overall, we find a low-cloud brightening potential of 20.8 ± 0.96 W m−2 ln(Nd)−1, despite an overall negative LWP adjustment for non-precipitating marine stratocumulus, owing to the high occurrence (37% of the time) of thin non-precipitating clouds (LWP < 55 g m−2) that exhibit brightening. In addition, we identify two more susceptibility regimes, the entrainment-darkening regime (36% of the time), corresponding to negative LWP adjustment, and the precipitating-brightening regime (22% of the time), corresponding to precipitation suppression. The influence of large-scale meteorological conditions, obtained from the ERA5 reanalysis, on the albedo susceptibility is also examined. Over the NE Pacific, clear seasonal covariabilities among meteorological factors related to the large-scale circulation are found to play an important role in grouping favorable conditions for each susceptibility regime. Our results indicate that, for the NE Pacific stratocumulus deck, the strongest positively susceptible cloud states occur most frequently for low cloud top height (CTH), the highest lower-tropospheric stability (LTS), low sea-surface temperature (SST), and the lowest free-tropospheric relative humidity (RHft) conditions, whereas cloud states that exhibit negative LWP adjustment occur most frequently under high CTH and intermediate LTS, SST, and RHft conditions. The warm rain suppression driven cloud brightening is found to preferably occur either under unstable atmospheric conditions (low LTS) or high RHft conditions that co-occur with warm SST. Mutual information analyses reveal a dominating control of LWP, Nd and CTH (cloud state indicators) on low-cloud albedo susceptibility, rather than of the meteorological factors that drive these cloud states.


2021 ◽  
Vol 21 (12) ◽  
pp. 9809-9828
Author(s):  
Bida Jian ◽  
Jiming Li ◽  
Guoyin Wang ◽  
Yuxin Zhao ◽  
Yarong Li ◽  
...  

Abstract. The cloud albedo in the marine subtropical stratocumulus regions plays a key role in regulating the regional energy budget. Based on 12 years of monthly data from multiple satellite datasets, the long-term, monthly and seasonal cycle of averaged cloud albedo in five stratocumulus regions were investigated to intercompare the atmosphere-only simulations between phases 5 and 6 of the Coupled Model Intercomparison Project (AMIP5 and AMIP6). Statistical results showed that the long-term regressed cloud albedos were underestimated in most AMIP6 models compared with the satellite-driven cloud albedos, and the AMIP6 models produced a similar spread as AMIP5 over all regions. The monthly averaged values and seasonal cycle of cloud albedo of AMIP6 ensemble mean showed a better correlation with the satellite-driven observations than that of the AMIP5 ensemble mean. However, the AMIP6 model still failed to reproduce the values and amplitude in some regions. By employing the Modern-Era Retrospective Analysis for Research and Applications Version 2 (MERRA-2) data, this study estimated the relative contributions of different aerosols and meteorological factors on the long-term variation of marine stratocumulus cloud albedo under different cloud liquid water path (LWP) conditions. The multiple regression models can explain ∼ 65 % of the changes in the cloud albedo. Under the monthly mean LWP ≤ 65 g m−2, dust and black carbon dominantly contributed to the changes in the cloud albedo, while dust and sulfur dioxide aerosol contributed the most under the condition of 65 g m−2 < LWP ≤ 120 g m−2. These results suggest that the parameterization of cloud–aerosol interactions is crucial for accurately simulating the cloud albedo in climate models.


2021 ◽  
Author(s):  
Matt Pankhurst ◽  
Christopher Stevenson ◽  
Beverley Coldwell
Keyword(s):  

2021 ◽  
Author(s):  
George Datseris ◽  
Bjorn Stevens

&lt;p&gt;Radiation measurements at the top of the atmosphere show that the two hemispheres of Earth reflect the same amount of shortwave radiation in the long time average (so-called hemispheric albedo symmetry). Here we try to find the origin of this symmetry by analyzing radiation data directly, as well as cloud properties. The radiation data, while being mostly noise, hint that a hemispheric communication mechanism is likely but do not provide enough information to identify it. Cloud properties allow us to define an effective cloud albedo field, much more useful than the commonly used cloud area fraction. Based on that we first show that extra cloud albedo of the SH exactly compensates the extra surface albedo of the NH. We then identify that this this compensation comes almost exclusively from the storm tracks of the extratropics. We close discussing the importance of approaching planetary albedo as a whole and open questions that remain.&lt;/p&gt;


2021 ◽  
Author(s):  
Bida Jian ◽  
Jiming Li ◽  
Guoyin Wang ◽  
Yuxin Zhao ◽  
Yarong Li ◽  
...  

Abstract. The cloud albedo at the subtropical marine subtropical stratocumulus regions has a key role in regulating the regional energy budget. Based on 12 years of monthly data from multiple satellite datasets, the long-term, monthly and seasonal cycle averaged cloud albedo at five stratocumulus regions were investigated to inter-compare the atmosphere-only simulations of Phase 5 and 6 of the Coupled Model Inter-comparison Project (AMIP5 and AMIP6). Statistical results showed that the long-term regressed cloud albedos were underestimated in most AMIP6 models compared with the satellite-driven cloud albedos, and the AMIP6 models produced a similar spread of AMIP5 at all regions. The monthly mean and seasonal cycle of cloud albedo of AMIP6 ensemble mean showed better correlation with the satellite-driven observation than that of AMIP5 ensemble mean, however, fail to reproduce the values and amplitude in some regions. By employing the Modern-Era Retrospective Analysis for Research and Applications Version 2 data, this study estimated the relative contributions of different aerosols and meteorological factors on the marine stratocumulus cloud albedo under different cloud liquid water path (LWP) conditions. The multiple regression models can explain ~60 % of the changes in the cloud albedo. Under the monthly mean LWP ≤ 60 g m−2, dust and black carbon dominantly contributed to the changes in the cloud albedo, while sulfate aerosol contributed the most under the condition of 60 g m−2 


2020 ◽  
Vol 12 (12) ◽  
pp. 1982 ◽  
Author(s):  
Clark J. Weaver ◽  
Dong L. Wu ◽  
Pawan K. Bhartia ◽  
Gordon J. Labow ◽  
David P. Haffner

Black-sky cloud albedo (BCA) is derived from satellite UV 340 nm observations from NOAA and NASA satellites to infer long-term (1980–2018) shortwave cloud albedo variations induced by volcano eruptions, the El Niño–Southern Oscillation, and decadal warming. While the UV cloud albedo has shown no long-term trend since 1980, there are statistically significant reductions over the North Atlantic and over the marine stratocumulus decks off the coast of California; increases in cloud albedo can be seen over Southeast Asia and over cloud decks off the coast of South America. The derived BCA assumes a C-1 water cloud model with varying cloud optical depths and a Cox–Munk surface BRDF over the ocean, using radiances calibrated over the East Antarctic Plateau and Greenland ice sheets during summer.


Sign in / Sign up

Export Citation Format

Share Document