scholarly journals Solution-State Proton Nuclear Magnetic Resonance (NMR) Spectroscopic Studies of the Active Site of Myoglobins in Various Ligated States: Models for Macromolecule-Substrate Binding and Advancement of Paramagnetic NMR Techniques

2000 ◽  
Author(s):  
Sidney Yee
1987 ◽  
Vol 41 (7) ◽  
pp. 1194-1199 ◽  
Author(s):  
David L. Ashley ◽  
Elizabeth R. Barnhart ◽  
Donald G. Patterson ◽  
Robert H. Hill

Nuclear magnetic resonance (NMR) techniques are used to determine the chlorination pattern on a number of chlorinated pyrenes and pyrene-addition products. Determining chemical shifts, couplings, and longitudinal relaxation rates makes the unequivocal assignment of these molecules possible. Chlorination under the conditions described here were found to follow the normal orientation rules for pyrene. Spectral parameters obtained from these molecules are consistent enough to allow further application to unknown compounds. This should simplify assigning NMR spectra to other chlorinated pyrene standards.


2021 ◽  
Vol 2 (1) ◽  
pp. 15-23
Author(s):  
Rubin Dasgupta ◽  
Karthick B. S. S. Gupta ◽  
Huub J. M. de Groot ◽  
Marcellus Ubbink

Abstract. Laccases efficiently reduce dioxygen to water in an active site containing a tri-nuclear copper centre (TNC). The dynamics of the protein matrix is a determining factor in the efficiency in catalysis. To probe mobility, nuclear magnetic resonance (NMR) spectroscopy is highly suitable. However, several factors complicate the assignment of resonances to active site nuclei in laccases. The paramagnetic nature causes large shifts and line broadening. Furthermore, the presence of slow chemical exchange processes of the imidazole rings of copper ligand results in peak doubling. A third complicating factor is that the enzyme occurs in two states, the native intermediate (NI) and resting oxidized (RO) states, with different paramagnetic properties. The present study aims at resolving the complex paramagnetic NMR spectra of the TNC of Streptomyces coelicolor small laccase (SLAC). With a combination of paramagnetically tailored NMR experiments, all eight His Nδ1 and Hδ1 resonances for the NI state are identified, as well as His Hβ protons for the RO state. With the help of second-shell mutagenesis, selective resonances are tentatively assigned to the histidine ligands of the copper in the type-2 site. This study demonstrates the utility of the approaches used for the sequence-specific assignment of the paramagnetic NMR spectra of ligands in the TNC that ultimately may lead to a description of the underlying motion.


Sign in / Sign up

Export Citation Format

Share Document