Climate Model Evaluation of Atmospheric Rivers Over the Contiguous United States

2021 ◽  
Author(s):  
◽  
Ilan Gonzalez-Hirshfeld
2019 ◽  
Vol 20 (7) ◽  
pp. 1339-1357 ◽  
Author(s):  
Peter B. Gibson ◽  
Duane E. Waliser ◽  
Huikyo Lee ◽  
Baijun Tian ◽  
Elias Massoud

Abstract Climate model evaluation is complicated by the presence of observational uncertainty. In this study we analyze daily precipitation indices and compare multiple gridded observational and reanalysis products with regional climate models (RCMs) from the North American component of the Coordinated Regional Climate Downscaling Experiment (NA-CORDEX) multimodel ensemble. In the context of model evaluation, observational product differences across the contiguous United States (CONUS) are also deemed nontrivial for some indices, especially for annual counts of consecutive wet days and for heavy precipitation indices. Multidimensional scaling (MDS) is used to directly include this observational spread into the model evaluation procedure, enabling visualization and interpretation of model differences relative to a “cloud” of observational uncertainty. Applying MDS to the evaluation of NA-CORDEX RCMs reveals situations of added value from dynamical downscaling, situations of degraded performance from dynamical downscaling, and the sensitivity of model performance to model resolution. On precipitation days, higher-resolution RCMs typically simulate higher mean and extreme precipitation rates than their lower-resolution pairs, sometimes improving model fidelity with observations. These results document the model spread and biases in daily precipitation extremes across the full NA-CORDEX model ensemble. The often-large divergence between in situ observations, satellite data, and reanalysis, shown here for CONUS, is especially relevant for data-sparse regions of the globe where satellite and reanalysis products are extensively relied upon. This highlights the need to carefully consider multiple observational products when evaluating climate models.


2018 ◽  
Author(s):  
Huikyo Lee ◽  
Alexander Goodman ◽  
Lewis McGibbney ◽  
Duane Waliser ◽  
Jinwon Kim ◽  
...  

Abstract. The Regional Climate Model Evaluation System (RCMES) is an enabling tool of the National Aeronautics and Space Administration to support the United States National Climate Assessment. As a comprehensive system for evaluating climate models on regional and continental scales using observational datasets from a variety of sources, RCMES is designed to yield information on the performance of climate models and guide their improvement. Here we present a user-oriented document describing the latest version of RCMES, its development process and future plans for improvements. The main objective of RCMES is to facilitate the climate model evaluation process at regional scales. RCMES provides a framework for performing systematic evaluations of climate simulations, such as those from the Coordinated Regional Climate Downscaling Experiment (CORDEX), using in-situ observations as well as satellite and reanalysis data products. The main components of RCMES are: 1) a database of observations widely used for climate model evaluation, 2) various data loaders to import climate models and observations in different formats, 3) a versatile processor to subset and regrid the loaded datasets, 4) performance metrics designed to assess and quantify model skill, 5) plotting routines to visualize the performance metrics, 6) a toolkit for statistically downscaling climate model simulations, and 7) two installation packages to maximize convenience of users without Python skills. RCMES website is maintained up to date with brief explanation of these components. Although there are other open-source software (OSS) toolkits that facilitate analysis and evaluation of climate models, there is a need for climate scientists to participate in the development and customization of OSS to study regional climate change. To establish infrastructure and to ensure software sustainability, development of RCMES is an open, publicly accessible process enabled by leveraging the Apache Software Foundation's OSS library, Apache Open Climate Workbench (OCW). The OCW software that powers RCMES includes a Python OSS library for common climate model evaluation tasks as well as a set of user-friendly interfaces for quickly configuring a model evaluation task. OCW also allows users to build their own climate data analysis tools, such as the statistical downscaling toolkit provided as a part of RCMES.


2013 ◽  
Vol 10 (3) ◽  
pp. 3541-3594 ◽  
Author(s):  
A. Loew ◽  
T. Stacke ◽  
W. Dorigo ◽  
R. de Jeu ◽  
S. Hagemann

Abstract. Soil moisture is an essential climate variable of major importance for land-atmosphere interactions and global hydrology. An appropriate representation of soil moisture dynamics in global climate models is therefore important. Recently, a first multidecadal, observational based soil moisture data set has become available that provides information on soil moisture dynamics from satellite observations (ECVSM). The present study investigates the potential and limitations of this new dataset for several applications for climate model evaluation. We compare soil moisture data from satellite observations, reanalysis data and simulation results from a state-of-the-art climate model and analyze relationships between soil moisture and precipitation anomalies in the different datasets. In a detailed regional study, we show that ECVSM is capable to capture well interannual and intraannual soil moisture and precipitation dynamics in the Sahelian region. Current deficits of the new dataset are critically discussed and summarized at the end of the paper to provide guidance for an appropriate usage of the ECVSM dataset for climate studies.


2020 ◽  
Author(s):  
Kevin Debeire ◽  
Veronika Eyring ◽  
Peer Nowack ◽  
Jakob Runge

<p>Causal discovery algorithms are machine learning methods that estimate the dependencies between different variables. One of these algorithms, the recently developed PCMCI algorithm (Runge et al., 2019) estimates the time-lagged causal dependency structures from multiple time series and is adapted to common properties of Earth System time series data. The PCMCI algorithm has already been successfully applied in climate science to reveal known interaction pathways between Earth regions commonly referred to as teleconnections, and to explore new teleconnections (Kretschmer et al., 2017). One recent study used this method to evaluate models participating in the Coupled Model Intercomparison Project Phase 5  (CMIP5) (Nowack et al., 2019).</p><p>Here, we build on the Nowack et al. study and use PCMCI on dimension-reduced meteorological reanalysis data and the CMIP6 ensembles data. The resulting causal networks represent teleconnections (causal links) in each of the CMIP6 climate models. The models’ performance in representing realistic teleconnections is then assessed by comparing the causal networks of the individual CMIP6 models to the one obtained from meteorological reanalysis. We show that causal discovery is a promising and novel approach that complements existing model evaluation approaches.</p><p> </p><p>References:</p><p>Runge, J., P. Nowack, M. Kretschmer, S. Flaxman, D. Sejdinovic, Detecting and quantifying causal associations in large nonlinear time series datasets. Sci. Adv. 5, eaau4996, 2019.</p><p>Kretschmer, M., J. Runge, and D. Coumou, Early prediction of extreme stratospheric polar vortex states based on causal precursors, Geophysical Research Letters, doi:10.1002/2017GL074696, 2017.</p><p>Nowack, P. J., J. Runge, V. Eyring, and J. D. Haigh, Causal networks for climate model evaluation and constrained projections, in review, 2019.</p>


Sign in / Sign up

Export Citation Format

Share Document