Precipitation Indices
Recently Published Documents





Atmosphere ◽  
2021 ◽  
Vol 12 (11) ◽  
pp. 1522
Xiaoxia Yang ◽  
Juan Wu ◽  
Jia Liu ◽  
Xuchun Ye

In this study, 11 extreme precipitation indices were selected to examine the spatiotemporal variation of extreme precipitation in the Poyang Lake Basin during 1960–2017. The responses of extreme precipitation indices to El Nino/Southern Oscillation (ENSO) events of different Pacific Ocean areas were further investigated. The results show that the temperature in the Poyang Lake Basin has increased significantly since the 1990s, and the inter-decadal precipitation fluctuated. Most extreme precipitation indices showed an increasing trend with abrupt changes occurring around 1991. Spatially, most of the extreme precipitation indices decreased from northeast to southwest. The increasing trend of most indices in the center and south of the basin was relatively prominent. The linear correlations between the extreme precipitation indices and Nino 1 + 2 were the most significant. On the timescale of 2–6 years, a common oscillation period between the extreme precipitation of the basin and the four ENSO indices can be observed. After 2010, the positive correlation between the precipitation of the Poyang Lake Basin and the SST (sea surface temperature) anomalies in the equatorial Pacific increased significantly. Additionally, annual total wet–day precipitation in most areas of the Poyang Lake Basin increased with varying degrees in warm ENSO years. The results of this study will improve the understanding of the complex background and driving mechanism of flood disasters in the Poyang Lake Basin.

Climate ◽  
2021 ◽  
Vol 9 (11) ◽  
pp. 160
Ezéchiel Obada ◽  
Eric Adechina Alamou ◽  
Eliezer Iboukoun Biao ◽  
Esdras B. Josué Zandagba

Observed rainfall data (1961–2016) were used to analyze variability, trends and changes of extreme precipitation indices over Benin. Nine indices out of the ones developed by the Expert Team on Climate Change Detection and Indices (ETCCDI) were used. The results indicate a mix of downward and upward trends for maximum 1-day precipitation (RX1day) and maximum 5-days precipitation (RX5day). Decrease trends are observed for annual total precipitation of wet days (P), while significant increases are found for the simple daily intensity index (SDII). The number of wet days (RR1) and maximum consecutive dry days (CDD) show a mix of increase/decrease trends. However, the number of heavy (R10) and very heavy (R20) wet days and maximum consecutive wet days (CWD) show decreased trends. All wet indices increased over 1991–2010 in relation to 1971–1990. The increase in all wet indices over Benin could explain the intensification of hydrology, and the increase in the frequency and the intensity of floods. It caused damages such as soil erosion, crop destruction, livestock destruction, displacement of populations, proliferation of waterborne diseases and loss of human life. Some adaptive strategies are suggested to mitigate the impacts of changes in extreme rainfall.

2021 ◽  
Abhishekh Kumar Srivastava ◽  
Richard Grotjahn ◽  
Paul Aaron Ullrich ◽  
Colin Zarzycki

AbstractThe present work evaluates historical precipitation and its indices defined by the Expert Team on Climate Change Detection and Indices (ETCCDI) in suites of dynamically and statistically downscaled regional climate models (RCMs) against NOAA’s Global Historical Climatology Network Daily (GHCN-Daily) dataset over Florida. The models examined here are: (1) nested RCMs involved in the North American CORDEX (NA-CORDEX) program, (2) variable resolution Community Earth System Models (VR-CESM), (3) Coupled Model Intercomparison Project phase 5 (CMIP5) models statistically downscaled using localized constructed analogs (LOCA) technique. To quantify observational uncertainty, three in situ-based (PRISM, Livneh, CPC) and three reanalysis (ERA5, MERRA2, NARR) datasets are also evaluated against the station data. The reanalyses and dynamically downscaled RCMs generally underestimate the magnitude of the monthly precipitation and the frequency of the extreme rainfall in summer. The models forced with CanESM2 miss the phase of the seasonality of extreme precipitation. All models and reanalyses severely underestimate both the mean and interannual variability of mean wet-day precipitation (SDII), consecutive dry days (CDD), and overestimate consecutive wet days (CWD). Metric analysis suggests large uncertainty across NA-CORDEX models. Both the LOCA and VR-CESM models perform better than the majority of models. Overall, RegCM4 and WRF models perform poorer than the median model performance. The performance uncertainty across models is comparable to that in the reanalyses. Specifically, NARR performs poorer than the median model performance in simulating the mean indices and MERRA2 performs worse than the majority of models in capturing the interannual variability of the indices.

Water ◽  
2021 ◽  
Vol 13 (20) ◽  
pp. 2848
Wenfeng Hu ◽  
Junqiang Yao ◽  
Qing He ◽  
Jing Chen

The Tibetan Plateau (TP) are regions that are most sensitive to climate change, especially extreme precipitation changes with elevation, may increase the risk of natural disasters and have attracted attention for the study of extreme events in order to identify adaptive actions. Based on daily observed data from 113 meteorological stations in the Tibetan Plateau and the surrounding regions in China during 1971–2017, we calculated the annual total precipitation and extreme precipitation indices using the R ClimDex software package and explored elevation-dependent precipitation trends. The results demonstrate that the annual total precipitation increased at a rate of 6.7 mm/decade, and the contribution of extreme precipitation to total precipitation increased over time, and the climate extremes were enhanced. The annual total, seasonal precipitation, and precipitation extreme trends were observed in terms of elevation dependence in the Tibetan Plateau (TP) and the surrounding area of the Tibetan Plateau (TPS) during 1971–2017. There is growing evidence that the elevation-dependent wetting (EDWE) is complex over the TP. The trends in total precipitation have a strong dependence on elevation, and the EDWE is highlighted by the extreme precipitation indices, for example, the number of heavy precipitation days (R10) and consecutive wet days (CWD). The dependence of extreme precipitation on elevation is heterogeneous, as other extreme indices do not indicate EDWE. These findings highlight the precipitation complexity in the TP. The findings of this study will be helpful for improving our understanding of variabilities in precipitation and extreme precipitation in response to climate change and will provide support for water resource management and disaster prevention in plateaus and mountain ranges.

2021 ◽  
Vol 18 ◽  
pp. 157-167
Réka Suga ◽  
Otília A. Megyeri-Korotaj ◽  
Gabriella Allaga-Zsebeházi

Abstract. In the framework of the KlimAdat national project, the Hungarian Meteorological Service (OMSZ) is aiming to perform 10 km horizontal resolution simulations with the 2015 version of the REMO regional climate model over Central and Eastern Europe. The long-term simulations were preceded by a 10-year long sensitivity study on domain size, which is summarised in this paper. We selected three different domains embedded in each other, which contain the whole area of the Danube and Tisza river catchments. Lateral boundary conditions were obtained from the 50 km resolution REMO driven by the MPI-ESM-LR global climate model. Simulations were performed for the period of 1970–1980 including 1-year spin-up. Monthly and seasonal means of daily 2 m temperature, precipitation sum and several precipitation indices were evaluated. Reference datasets were E-OBS 19.0 and CarpatClim-HU. We can conclude, that the selection of domain size has a larger impact on the simulation of precipitation, and in the case of the seasonal mean of the precipitation indices, the differences amongst the results obtained on each model domain exceed 10 %. In general, the smallest biases occurred on the largest domain, therefore further long-term simulations are being produced on this domain.

Atmosphere ◽  
2021 ◽  
Vol 12 (9) ◽  
pp. 1136
Wenbo Yan ◽  
Yunling He ◽  
Ya Cai ◽  
Xilin Cui ◽  
Xinxing Qu

Global warming is increasing the frequency and intensity of extreme weather events around the world. The extreme climate in plateau and mountainous areas is sensitive and fragile. Based on the software Rclimdex 1.0, the spatio-temporal variation characteristics of 27 extreme climate indices at 120 meteorological stations were calculated in Yunnan from 1960 to 2019. The results show that the extreme temperature is rising, and the warming rate at night is higher than that in the daytime. It showed a trend of warming and drying, and precipitation was concentrated into more intense bursts. Extreme temperature cold indices (TX10p, TN10p, FD0, ID0, and CSDI) were negatively correlated with extreme precipitation indices (R × 5day, PRCPTOT, R10 mm, R20 mm, and R25 mm). Extreme temperature warmth indices (TX90p and TN90p) were positively correlated with extreme precipitation indices (R × 5day, CWD, PRCPTOT, R10 mm, R20 mm, and R25 mm). The change rate of extreme temperature does not increase linearly with altitude. The increase in middle-altitude and high-altitude areas is higher than that in low-altitude areas. Compared with ENSO and AO, NAO is a vital circulation pattern affecting the extreme climate in Yunnan. The influence of NAO on Yunnan’s extreme climate indices is most significant in the current month and the second month that follows. NAO was negatively correlated with extreme temperature warm indices (TN90p, TX90p, SU25, and TR20). NAO positively correlates with the extreme cold temperature indices (TN10p and TX10p). Except that ENSO has a significant effect on CDD, the effect of the general circulation patterns on the extreme temperature indices was more significant than that on the extreme precipitation indices in Yunnan. The results of this study are helpful to further understand and predict the characteristics of extreme climatic events and the factors affecting their geographical locations and atmospheric circulation patterns in Yunnan.

2021 ◽  
Quarban Aliyar ◽  
Santosh Dhungana ◽  
Sangam Shrestha

Abstract The civil war, harsh climate, tough topography and lack of accurate meteorological stations has limited observed data across Afghanistan. In order to fulfill the gap, this study analyzed the trend in precipitation and its extremes using Asian Precipitation Highly Resolved Observational Data Integration Towards Evaluation (APHRODITE) daily dataset between 1951 to 2010 at the spatial resolution of 0.25˚˟0.25˚. Non-parametric modified Mann-Kendall test and Sen’s slope estimator were employed to detect trend and quantify it at the significance level of 5%. Significant decreasing trends were observed only in small clusters of southwestern regions ranging between 0 to -1.5mm/year and northeastern region between -1.5 to -6 mm/year for the annual time series. Similar trend pattern was observed in spring season decreasing at the rate of -0.15 to 0.54 mm/year in northeastern and 0 to -0.15 mm/year southwestern region. Decrease in spring precipitation is expected to affect crop production especially in northeastern region which host 22 % of the arable area. Increasing trend in eastern region at maximum of 0.16 mm/year was observed which could intensify the flooding events. Trend analysis of extreme precipitation indices indicated similar spatial distribution to the mean precipitation, concentrated around southwestern, northeastern, and eastern regions. Increasing frequency of consecutive dry days in western region and very heavy precipitation (R10mm) and extremely heavy precipitation (R20mm) in eastern region are fueling the occurrence of droughts and floods respectively. Taking these findings of erratic nature of rainfall and extreme events into consideration for sustainable management of water resources would be fruitful.

Sign in / Sign up

Export Citation Format

Share Document