Causal Discovery as a novel approach for CMIP6 climate model evaluation

Author(s):  
Kevin Debeire ◽  
Veronika Eyring ◽  
Peer Nowack ◽  
Jakob Runge

<p>Causal discovery algorithms are machine learning methods that estimate the dependencies between different variables. One of these algorithms, the recently developed PCMCI algorithm (Runge et al., 2019) estimates the time-lagged causal dependency structures from multiple time series and is adapted to common properties of Earth System time series data. The PCMCI algorithm has already been successfully applied in climate science to reveal known interaction pathways between Earth regions commonly referred to as teleconnections, and to explore new teleconnections (Kretschmer et al., 2017). One recent study used this method to evaluate models participating in the Coupled Model Intercomparison Project Phase 5  (CMIP5) (Nowack et al., 2019).</p><p>Here, we build on the Nowack et al. study and use PCMCI on dimension-reduced meteorological reanalysis data and the CMIP6 ensembles data. The resulting causal networks represent teleconnections (causal links) in each of the CMIP6 climate models. The models’ performance in representing realistic teleconnections is then assessed by comparing the causal networks of the individual CMIP6 models to the one obtained from meteorological reanalysis. We show that causal discovery is a promising and novel approach that complements existing model evaluation approaches.</p><p> </p><p>References:</p><p>Runge, J., P. Nowack, M. Kretschmer, S. Flaxman, D. Sejdinovic, Detecting and quantifying causal associations in large nonlinear time series datasets. Sci. Adv. 5, eaau4996, 2019.</p><p>Kretschmer, M., J. Runge, and D. Coumou, Early prediction of extreme stratospheric polar vortex states based on causal precursors, Geophysical Research Letters, doi:10.1002/2017GL074696, 2017.</p><p>Nowack, P. J., J. Runge, V. Eyring, and J. D. Haigh, Causal networks for climate model evaluation and constrained projections, in review, 2019.</p>

2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Peer Nowack ◽  
Jakob Runge ◽  
Veronika Eyring ◽  
Joanna D. Haigh

2021 ◽  
Author(s):  
Kevin Debeire ◽  
Veronika Eyring ◽  
Peer Nowack ◽  
Jakob Runge

<p>The models participating in the Coupled Model Intercomparison Project Phase 6 (CMIP6) deliver insights on the evolution of the Earth's  climate. The global precipitation changes follow the magnitude of the warming according to a recent study (Tebaldi, Debeire, Eyring et al., 2020) of the CMIP6 ensemble-mean. However, Earth systems models exhibit a large range in simulated precipitation projection over land. In this study, we present a potential approach to constrain the precipitation changes over land globally and regionally. This approach performs a process-oriented model evaluation similar to Nowack et al. study. We evaluate the ability of models to represent atmospheric dynamical interactions by applying Causal Discovery algorithm. We find a relationship between the ability to represent dynamical interactions close to the observations and the projected precipitation changes over land of the model. We show how this relationship can be used to constrain projection of precipitation over land.</p><p> </p><p>References:</p><p>Nowack, P., Runge, J., Eyring, V. et al. Causal networks for climate model evaluation and constrained projections. Nat Commun 11, 1415. https://doi.org/10.1038/s41467-020-15195-y, 2020.</p><p>Runge, J., P. Nowack, M. Kretschmer, S. Flaxman, D. Sejdinovic, Detecting and quantifying causal associations in large nonlinear time series datasets. Sci. Adv. 5, eaau4996, 2019.</p><p>Runge, J, Causal Network Reconstruction from Time Series: From Theoretical Assumptions to Practical Estimation. Chaos: An Interdisciplinary Journal of Nonlinear Science 28 (7): 075310. https://aip.scitation.org/doi/10.1063/1.5025050, 2018.</p><p>Tebaldi, C., Debeire, K., Eyring, V., Fischer, E., Fyfe, J., Friedlingstein, P., Knutti, R., Lowe, J., O'Neill, B., Sanderson, B., van Vuuren, D., Riahi, K., Meinshausen, M., Nicholls, Z., Hurtt, G., Kriegler, E., Lamarque, J.-F., Meehl, G., Moss, R., Bauer, S. E., Boucher, O., Brovkin, V., Golaz, J.-C., Gualdi, S., Guo, H., John, J. G., Kharin, S., Koshiro, T., Ma, L., Olivié, D., Panickal, S., Qiao, F., Rosenbloom, N., Schupfner, M., Seferian, R., Song, Z., Steger, C., Sellar, A., Swart, N., Tachiiri, K., Tatebe, H., Voldoire, A., Volodin, E., Wyser, K., Xin, X., Xinyao, R., Yang, S., Yu, Y., and Ziehn, T.: Climate model projections from the Scenario Model Intercomparison Project (ScenarioMIP) of CMIP6, Earth Syst. Dynam. Discuss. [preprint], https://doi.org/10.5194/esd-2020-68, in review, 2020.</p>


2018 ◽  
Vol 15 (147) ◽  
pp. 20180695 ◽  
Author(s):  
Simone Cenci ◽  
Serguei Saavedra

Biotic interactions are expected to play a major role in shaping the dynamics of ecological systems. Yet, quantifying the effects of biotic interactions has been challenging due to a lack of appropriate methods to extract accurate measurements of interaction parameters from experimental data. One of the main limitations of existing methods is that the parameters inferred from noisy, sparsely sampled, nonlinear data are seldom uniquely identifiable. That is, many different parameters can be compatible with the same dataset and can generalize to independent data equally well. Hence, it is difficult to justify conclusive assertions about the effect of biotic interactions without information about their associated uncertainty. Here, we develop an ensemble method based on model averaging to quantify the uncertainty associated with the effect of biotic interactions on community dynamics from non-equilibrium ecological time-series data. Our method is able to detect the most informative time intervals for each biotic interaction within a multivariate time series and can be easily adapted to different regression schemes. Overall, this novel approach can be used to associate a time-dependent uncertainty with the effect of biotic interactions. Moreover, because we quantify uncertainty with minimal assumptions about the data-generating process, our approach can be applied to any data for which interactions among variables strongly affect the overall dynamics of the system.


2019 ◽  
Vol 20 (7) ◽  
pp. 1339-1357 ◽  
Author(s):  
Peter B. Gibson ◽  
Duane E. Waliser ◽  
Huikyo Lee ◽  
Baijun Tian ◽  
Elias Massoud

Abstract Climate model evaluation is complicated by the presence of observational uncertainty. In this study we analyze daily precipitation indices and compare multiple gridded observational and reanalysis products with regional climate models (RCMs) from the North American component of the Coordinated Regional Climate Downscaling Experiment (NA-CORDEX) multimodel ensemble. In the context of model evaluation, observational product differences across the contiguous United States (CONUS) are also deemed nontrivial for some indices, especially for annual counts of consecutive wet days and for heavy precipitation indices. Multidimensional scaling (MDS) is used to directly include this observational spread into the model evaluation procedure, enabling visualization and interpretation of model differences relative to a “cloud” of observational uncertainty. Applying MDS to the evaluation of NA-CORDEX RCMs reveals situations of added value from dynamical downscaling, situations of degraded performance from dynamical downscaling, and the sensitivity of model performance to model resolution. On precipitation days, higher-resolution RCMs typically simulate higher mean and extreme precipitation rates than their lower-resolution pairs, sometimes improving model fidelity with observations. These results document the model spread and biases in daily precipitation extremes across the full NA-CORDEX model ensemble. The often-large divergence between in situ observations, satellite data, and reanalysis, shown here for CONUS, is especially relevant for data-sparse regions of the globe where satellite and reanalysis products are extensively relied upon. This highlights the need to carefully consider multiple observational products when evaluating climate models.


2018 ◽  
Author(s):  
Huikyo Lee ◽  
Alexander Goodman ◽  
Lewis McGibbney ◽  
Duane Waliser ◽  
Jinwon Kim ◽  
...  

Abstract. The Regional Climate Model Evaluation System (RCMES) is an enabling tool of the National Aeronautics and Space Administration to support the United States National Climate Assessment. As a comprehensive system for evaluating climate models on regional and continental scales using observational datasets from a variety of sources, RCMES is designed to yield information on the performance of climate models and guide their improvement. Here we present a user-oriented document describing the latest version of RCMES, its development process and future plans for improvements. The main objective of RCMES is to facilitate the climate model evaluation process at regional scales. RCMES provides a framework for performing systematic evaluations of climate simulations, such as those from the Coordinated Regional Climate Downscaling Experiment (CORDEX), using in-situ observations as well as satellite and reanalysis data products. The main components of RCMES are: 1) a database of observations widely used for climate model evaluation, 2) various data loaders to import climate models and observations in different formats, 3) a versatile processor to subset and regrid the loaded datasets, 4) performance metrics designed to assess and quantify model skill, 5) plotting routines to visualize the performance metrics, 6) a toolkit for statistically downscaling climate model simulations, and 7) two installation packages to maximize convenience of users without Python skills. RCMES website is maintained up to date with brief explanation of these components. Although there are other open-source software (OSS) toolkits that facilitate analysis and evaluation of climate models, there is a need for climate scientists to participate in the development and customization of OSS to study regional climate change. To establish infrastructure and to ensure software sustainability, development of RCMES is an open, publicly accessible process enabled by leveraging the Apache Software Foundation's OSS library, Apache Open Climate Workbench (OCW). The OCW software that powers RCMES includes a Python OSS library for common climate model evaluation tasks as well as a set of user-friendly interfaces for quickly configuring a model evaluation task. OCW also allows users to build their own climate data analysis tools, such as the statistical downscaling toolkit provided as a part of RCMES.


Sign in / Sign up

Export Citation Format

Share Document