scholarly journals Mechanical behaviors of enamel, dentin, and dental restorative materials by Three-point bending test

2016 ◽  
Vol 2 (4) ◽  
Author(s):  
Keyoung Jin Chun ◽  
Choong Yeon Kim ◽  
Jong Yeop Lee
Author(s):  
K. J. Chun ◽  
C. Y. Kim ◽  
J. Y. Lee

Dental restorative materials including amalgam, dental ceramic, gold alloy, dental resin, zirconia, and titanium alloy are used to reconstruct damaged teeth, as well as to recover their function. In this study, the mechanical properties of various dental restorative materials were determined using test specimens of identical shape and dimension under the same three-point bending test condition, and the test results were compared to enamel and dentin. The maximum bending force of enamel and dentin was 6.9 ± 2.1 N and 39.7 ± 8.3 N, and the maximum bending deflection was 0.12 ± 0.02 mm and 0.25 ± 0.03 mm, respectively. The maximum bending force of amalgam, dental ceramic, gold alloy, dental resin, zirconia, and titanium alloy were 1.9 ± 0.4 N, 2.7 ± 0.6 N, 66.9 ± 4.1 N, 2.7 ± 0.3 N, 19.0 ± 2.0 N, and 121.3 ± 6.8 N, respectively, and the maximum bending deflection was 0.20 ± 0.08 mm, 0.28 ± 0.07 mm, 2.53 ± 0.12 mm, 0.37 ± 0.05 mm, 0.39 ± 0.05 m, and 2.80 ± 0.08 mm, respectively. The dental restorative materials that possessed greater maximum bending force than that of enamel were gold alloy, zirconia, and titanium alloy. Gold alloy and titanium alloy had greater maximum bending force than dentin. The dental restorative materials that possessed greater maximum bending deflection than that of enamel were all of the dental restorative materials, and the dental restorative materials that possessed greater maximum bending deflection than that of dentin were all of the dental restorative materials except amalgam. The appropriate dental restorative materials for enamel are gold alloy and zirconia and for dentin is gold alloy concerning the maximum bending force and the maximum bending deflection. These results are expected to aid dentists in their choice of better clinical treatment and to contribute to the development of dental restorative materials that possess properties that are most similar to the mechanical properties of dental hard tissue.


2003 ◽  
Vol 11 (3) ◽  
pp. 162-167 ◽  
Author(s):  
Linda Wang ◽  
Paulo Henrique Perlatti D'Alpino ◽  
Lawrence Gonzaga Lopes ◽  
José Carlos Pereira

A wide variety of dental products that are launched on the market becomes the correct selection of these materials a difficult task. Although the mechanical properties do not necessarily represent their actual clinical performance, they are used to guide the effects of changes in their composition or processing on these properties. Also, these tests might help somehow the clinician to choose once comparisons between former formulations and new ones, as well as, with the leading brand, are highlighted by manufactures. This paper presents a review of the most important laboratory tests. In this manner, the knowledge of these tests will provide a critical opinion related to the properties of different dental materials.


1982 ◽  
Vol 40 (2) ◽  
pp. 113-120 ◽  
Author(s):  
Kjeld Kr. Skjørland ◽  
Arne Hensten-Pettersen ◽  
Dag ørsta-Vik ◽  
Karl-Johan Söderholm

2021 ◽  
Vol 12 (4) ◽  
pp. 164
Author(s):  
MORTEZA SHARIFI ◽  
REZA KHODADADI ◽  
MOHAMMAD TAVAKOLI ◽  
MASOUMEH BEHDARVANDI

2019 ◽  
Vol 38 (2) ◽  
pp. 163-176 ◽  
Author(s):  
Abdul Samad KHAN ◽  
Mariam Raza SYED

Sign in / Sign up

Export Citation Format

Share Document