scholarly journals His bundle pacing: a new look at the method

2020 ◽  
Vol 25 ◽  
pp. 4002
Author(s):  
N. A. Prikhodko ◽  
T. A. Lyubimtseva ◽  
S. V. Gureev ◽  
V. K. Lebedeva ◽  
D. S. Lebedev

His bundle pacing (HBP) implements physiological impulse propagation along the cardiac conduction system and can serve as an analogue of both right ventricular and biventricular pacing. This review highlights clinical anatomy issues related to HBP; the technique of lead implantation in the His position is considered. We also describe the electrophysiological basis of HBP, possibilities of lead extraction, indications for implantation, and prospects for further development of the technique. HBP is a promising direction in cardiology, which in the future may fundamentally change the algorithms for managing patients with heart failure and conduction disorders.

2020 ◽  
Vol 17 (5) ◽  
pp. 288-298
Author(s):  
Nadine Ali ◽  
Mathew Shun Shin ◽  
Zachary Whinnett

Abstract Purpose of Review The aim of cardiac resynchronization therapy (CRT) is to improve cardiac function by delivering more physiological cardiac activation to patients with heart failure and conduction abnormalities. Biventricular pacing (BVP) is the most commonly used method for delivering CRT; it has been shown in large randomized controlled trials to significantly improve morbidity and mortality in patients with heart failure. However, BVP delivers only modest reductions in ventricular activation time and is only beneficial in patients with prolonged QRS duration. In this review, we explore conduction system pacing as a method for delivering more effective ventricular resynchronization and to extend pacing therapy for heart failure to patients without left bundle branch block (LBBB). Recent Findings The aim of conduction system pacing is to provide physiological ventricular activation by directly stimulating the conduction system. Current modalities include His bundle and left conduction system pacing. His bundle pacing is the most established method; it has the potential to correct left bundle branch block and deliver more effective ventricular resynchronization than BVP. This translates into greater acute haemodynamic improvements and observational data suggests that His-CRT results in improvements in cardiac function and symptoms. AV-optimized His bundle pacing is being investigated in patients with heart failure and long PR interval without LBBB, to see if this improves exercise capacity. More recently, a technique for pacing the left bundle branch has been developed. Early studies show potential advantages including low and stable capture thresholds. Summary Conduction system pacing can deliver more effective ventricular resynchronization than BVP, which has the potential to deliver greater improvements in cardiac function. It may also provide the opportunity to extend pacing therapy for heart failure to patients who do not have LBBB. Further data is required from randomized trials to assess these promising pacing techniques.


2020 ◽  
Vol 90 (2) ◽  
Author(s):  
Francesco Vetta ◽  
Leonardo Marinaccio ◽  
Giampaolo Vetta

Since its introduction right ventricular apical (RVA) pacing has been the mainstay in cardiac pacing. However, in recent years there has been an upsurge of interest in permanent His bundle pacing (HBP), given the scientific evidence of the harmful role of dyssynchronous ventricular activation, induced by RVA pacing, in promoting the onset of heart failure and atrial fibrillation. After an intermediate period in which attention was focused on algorithms aimed at minimizing ventricular pacing, with partially inadequate and harmful results, scientific attention shifted to HBP, which proved to ensure a physiological electro-mechanical activation of the ventricles. The encouraging results obtained have allowed the introduction of HBP in recent guidelines for cardiac pacing in patients with bradicardia and cardiac conduction delay. Recent studies have also demonstrated the potential of HBP in patients with left bundle branch block and heart failure. HBP is promising as an attractive way to achieve physiological stimulation in patients with an indication for cardiac resynchronization therapy (CRT). Comparative studies of HB-CRT and biventricular pacing have shown similar results in numerically modest cohorts, although HB-CRT has been shown to promote better ventricular electrical resynchronization as demonstrated by a greater QRS narrowing. A widespread use of this pacing tecnique also depends on improvements in technology, as well as further validation of effectiveness in large randomised clinical trials


2017 ◽  
Vol 3 (11) ◽  
pp. 531-535
Author(s):  
Advay G. Bhatt ◽  
Dan L. Musat ◽  
Mark W. Preminger ◽  
Tina Sichrovsky ◽  
Suneet Mittal

Author(s):  
Masako Baba ◽  
Kentaro Yoshida ◽  
Osamu Igawa ◽  
Masayoshi Yamamoto ◽  
Akihiko Nogami ◽  
...  

Abstract Background A number of heart failure patients (HF) do not fully benefit from cardiac resynchronization therapy (CRT). Although His bundle pacing (HBP) have been developed as an alternative strategy, its role for treating advanced cardiomyopathy remains unclear. Case summary We previously reported a patient with lamin A/C cardiomyopathy (Eur Heart J Case Rep. 2020; 4:1-9). He had turned non-response to conventional biventricular pacing (BVP), and an upgrade to CRT combining para-His bundle pacing (HBP) and left ventricular (LV) pacing had markedly improved his HF status. In the present report, we assessed the autopsy and histological findings of this patient. A histological examination of both the LV and right ventricular (RV) apex pacing regions exhibited extensive scarring. Although a distinct conduction system was not identified in the alternative para-HBP region, the RV endocardium had more viable myocytes in this region. Discussion In patients with advanced cardiomyopathy accompanied by extensive fibrosis, RV apex pacing, delivered from scar tissue, can render conventional BVP ineffective. Additionally, HBP alone can not provide adequate resynchronization under the presence of diffuse injury of the His-Purkinje system. In these circumstances, combined para-HB and LV pacing may facilitate electrical and mechanical resynchronization of the ventricles and may be attributed to favourable CRT response in advanced HF, even if para-HBP fails to directly capture the conduction system.


2018 ◽  
Vol 27 ◽  
pp. S167-S168
Author(s):  
C. Chow ◽  
B. Abu Baker ◽  
C. Eastwood ◽  
U. Mohamed

1981 ◽  
Vol 59 (11) ◽  
pp. 1192-1195
Author(s):  
Peter E. Dresel ◽  
Keith D. Cameron

The effects of disopyramide (DP) and a new antiarrhythmic agent, disobutamide (DB) on cardiac conduction were studied using His bundle recording from modified rabbit Langendorff preparations electrically driven at 3 and 4 Hz. Both disopyramide (4–16 μg/mL) and disobutamide (1–30 μg/ml) slowed conduction throughout the atrioventricular conduction system, i.e., SA, AH, and HV intervals were increased in a dose-related manner. Conversion of the conduction time changes to percent changes indicates that disobutamide has a relatively equal effect on each part of the system whereas disopyramide exhibited significantly less effect on AV nodal conduction. Slowing of conduction in the AV node by DP was clearly related to rate. Changes in SA and HV intervals were rate related to a lesser degree. No such rate-related effect was evident with disobutamide. Block of atrial conduction occurred in two out of six hearts when the rate was increased at 8 μg/mL of DP and in three additional hearts at 16 μg/mL. This was interpreted to indicate a change in atrial excitability such that 2 × threshold currents no longer excited the tissues. This was not observed at any concentration of DB.


Heart Rhythm ◽  
2019 ◽  
Vol 16 (12) ◽  
pp. 1797-1807 ◽  
Author(s):  
Gaurav A. Upadhyay ◽  
Pugazhendhi Vijayaraman ◽  
Hemal M. Nayak ◽  
Nishant Verma ◽  
Gopi Dandamudi ◽  
...  

Heart ◽  
2018 ◽  
Vol 105 (2) ◽  
pp. 137-143 ◽  
Author(s):  
Weijian Huang ◽  
Lan Su ◽  
Shengjie Wu ◽  
Lei Xu ◽  
Fangyi Xiao ◽  
...  

ObjectivesHis bundle pacing (HBP) can potentially correct left bundle branch block (LBBB). We aimed to assess the efficacy of HBP to correct LBBB and long-term clinical outcomes with HBP in patients with heart failure (HF).MethodsThis is an observational study of patients with HF with typical LBBB who were indicated for pacing therapy and were consecutively enrolled from one centre. Permanent HBP leads were implanted if the LBBB correction threshold was <3.5V/0.5 ms or 3.0 V/1.0 ms. Pacing parameters, left ventricular ejection fraction (LVEF), left ventricular end-systolic volume (LVESV) and New York Heart Association (NYHA) Class were assessed during follow-up.ResultsIn 74 enrolled patients (69.6±9.2 years and 43 men), LBBB correction was acutely achieved in 72 (97.3%) patients, and 56 (75.7%) patients received permanent HBP (pHBP) while 18 patients did not receive permanent HBP (non-permanent HBP), due to no LBBB correction (n=2), high LBBB correction thresholds (n=10) and fixation failure (n=6). The median follow-up period of pHBP was 37.1 (range 15.0–48.7) months. Thirty patients with pHBP had completed 3-year follow-up, with LVEF increased from baseline 32.4±8.9% to 55.9±10.7% (p<0.001), LVESV decreased from a baseline of 137.9±64.1 mL to 52.4±32.6 mL (p<0.001) and NYHA Class improvement from baseline 2.73±0.58 to 1.03±0.18 (p<0.001). LBBB correction threshold remained stable with acute threshold of 2.13±1.19 V/0.5 ms to 2.29±0.92 V/0.5 ms at 3-year follow-up (p>0.05).ConclusionspHBP improved LVEF, LVESV and NYHA Class in patients with HF with typical LBBB.


Sign in / Sign up

Export Citation Format

Share Document