scholarly journals Effect of Plant Growth Regulators on Leaf Number, Leaf Area and Leaf Dry Matter in Grape

2011 ◽  
Vol 3 (1) ◽  
pp. 87-90 ◽  
Author(s):  
Zahoor Ahmad BHAT ◽  
Rizwan RASHID ◽  
Javid Ahmad BHAT

Influence of phenylureas (CPPU) and brassinosteriod (BR) along with GA (gibberellic acid) were studied on seedless grape vegetative characteristics like leaf number, leaf area and leaf dry matter. Growth regulators were sprayed on the vines either once (7 days after fruit set or 15 days after fruit set) or twice (7+15 days after fruit set). CPPU 2 ppm+BR 0.4 ppm+GA 25 ppm produced maximum number of leaves (18.78) while as untreated vines produced least leaf number (16.22) per shoot. Maximum leaf area (129.70 cm2) and dry matter content (26.51%) was obtained with higher CPPU (3 ppm) and BR (0.4 ppm) combination along with GA 25 ppm. Plant growth regulators whether naturally derived or synthetic are used to improve the productivity and quality of grapes. The relatively high value of grapes justifies more expensive inputs. A relatively small improvement in yield or fruit quality can justify the field application of a very costly product. Application of new generation growth regulators like brassinosteroids and phenylureas like CPPU have been reported to increase the leaf number as well as leaf area and dry matter thereby indirectly influencing the fruit yield and quality in grapes.

1986 ◽  
Vol 107 (2) ◽  
pp. 285-297 ◽  
Author(s):  
C. F. Green ◽  
L. V. Vaidyanathan ◽  
J. D. Ivins

SummaryObservations are presented from a crop of sugar beet grown in Cambridgeshire during 1978, and a field trial at Sutton Bonington during 1985 in which the influence of synthetic plant growth regulators (PGRs) daminozide, chlormequat, GA4+7 and ethephon were compared.Several distinct patterns of growth were evident, being similar for both growing seasons and described by two intersecting straight lines. Early development was characterized by a slow rate of biomass accumulation, a dominance of foliage production with a constant but small root fraction (around 40%), a low specific leaf area and a slow but conservative rate of sucrose fractionation. Later in the season the rate of stand growth was both constant and maximal, the root fraction doubled, specific leaf area increased and the rate of sucrose accumulation rose markedly.Transitions between developmental phases occurred at various times dependent on variate under consideration. The onset of the main growth period began at the end of June, followed by an increase in the rate of sucrose accumulation about 2 weeks later. Finally, near the end of July, partition of assimilate into the root assumed a faster rate. Changes in the partitioning into both roots and sucrose are discussed in relation to the development of the secondary cambium.Generally there were no effects of PGRs on biomass accumulation, dry-matter partitioning, specific leaf area and sucrose accumulation. However, daminozide increased early canopy expansion and early dry-matter production but failed to influence biomass or sugar yield.


2016 ◽  
pp. 99-103
Author(s):  
Árpád Szalacsi ◽  
Gergely Király ◽  
Szilvia Veres

Specific leaf area (SLA) of English oak (Quercus robur L.) and hornbeam (Carpinus betulus L.) as members of Querco robori-Carpinetum were investigated in two different habitat in terms of gap forest management: in the gap and in the inert forest. The artificial opening process of the forest resulted in more light for growing saplings and need for acclimatization. Photosynthesis is one of the most important ways for plant life and plant production basically influenced by altered light condition resulted in opening process. Efficient photosynthesis is important for plant life, plant production, but species-dependent plasticity of photosynthesis makes one species more tolerant, than others. The specific leaf area is acceptable parameters for characterising plant production, dry matter content and leaf structure. The dry matter content based on known leaf area is higher in oak both sun and shade leaves, than hornbeam. The different place of leaves in the canopy of trees did not influence the values of SLA.


2021 ◽  
Vol 93 (3) ◽  
Author(s):  
BRUNO CARRA ◽  
MATEUS S. PASA ◽  
EVERTON S. ABREU ◽  
MAXIMILIANO DINI ◽  
CARINA P. PASA ◽  
...  

1978 ◽  
Vol 90 (3) ◽  
pp. 569-577 ◽  
Author(s):  
G. O. Iremiren ◽  
G. M. Milbourn

SummaryTotal dry-matter yield of maize silage rose asymptotically as density was increased up to 17 plants/m2. Over the range 11–17 plants/m2, which is generally higher than is used in the U.K., the increase in yield was 1–1·6 t dry matter/ha which can justify the higher seed cost and although there was no adverse affect on time of maturity the risk of lodging increased at the highest density. During the harvest period whilst whole crop dry-matter percentage was rising from 23 to 28%, the ear dry-matter content rose steadily from 29 to 35%, whereas the leaf and stem dry-matter content remained essentially constant and only dried out at a later stage after a frost.Caldera 535 had a higher leaf area index and net assimilation rate than the earlier variety Julia which it outyielded by 15%. The additional yield was mainly stem tissue and the greater vegetative production caused an 11-day delay in reaching the silage stage of maturity (25% crop D.M.). NO differences occurred between density treatments and varieties in the forage quality components considered, namely percentage drymatter digestibility, modified acid-detergent fibre, crude protein and ash. Thus in U.K. conditions, total dry-matter yield exerts an overriding influence on the yields per unit area of these quality constituents. This contrasts with reports from the U.S.A. in which a reduced grain/stover ratio adversely influences silage quality.Removal of the whole ear (including husk and rachis) at an early stage in ear development resulted in a 50% reduction in the final dry-matter yield. In the earless plants, leaf area and net assimilation rate was lower, but the dry-matter content of the leaves and stem was considerably higher, and a marked purple coloration developed indicative of excess starch concentration. These results emphasize the need in maize silage not only for an adequate leaf canopy, best obtained early in the growing season by using high planting density and subsequently by using late maturing varieties, but also for sufficient sink capacity in the ear as well as in the stem fraction.


Author(s):  
Jiequn Ren ◽  
Minghai Zhang ◽  
Li Chen ◽  
Zhinian Li ◽  
Zhangyun Zheng

Sign in / Sign up

Export Citation Format

Share Document