Predicting the Authenticity of Banknotes Using Supervised Learning

2020 ◽  
Vol 1 (2) ◽  
pp. 1-4
Author(s):  
Priyam Guha ◽  
Abhishek Mukherjee ◽  
Abhishek Verma

This research paper deals with using supervised machine learning algorithms to detect authenticity of bank notes. In this research we were successful in achieving very high accuracy (of the order of 99%) by applying some data preprocessing tricks and then running the processed data on supervised learning algorithms like SVM, Decision Trees, Logistic Regression, KNN. We then proceed to analyze the misclassified points. We examine the confusion matrix to find out which algorithms had more number of false positives and which algorithm had more number of False negatives. This research paper deals with using supervised machine learning algorithms to detect authenticity of bank notes. In this research we were successful in achieving very high accuracy (of the order of 99%) by applying some data preprocessing tricks and then running the processed data on supervised learning algorithms like SVM, Decision Trees, Logistic Regression, KNN. We then proceed to analyze the misclassified points. We examine the confusion matrix to find out which algorithms had more number of false positives and which algorithm had more number of False negatives.

2021 ◽  
Vol 26 (5) ◽  
pp. 501-506
Author(s):  
Anuj Kumar Singh ◽  
Sandeep Kumar ◽  
Shashi Bhushan ◽  
Pramod Kumar ◽  
Arun Vashishtha

When anyone is looking to enroll for a freely available online course so the first and famous name comes in front of the searcher is MOOC courses. So here in this article our focus is to collect the comments by enrolled users for the specified MOOC course and apply sentiment analysis over that data. The significance of our article is to introduce a proficient sentiment analysis algorithm with high perceptive execution in MOOC courses, by seeking after the standards of gathering various supervised learning methods where the performance of various supervised machine learning algorithms in performing sentiment analysis of MOOC data. Some research questions have been addressed on sentiment analysis of MOOC data. For the assessment task, we have investigated a large no of MOOC courses, with the different Supervised Learning methods and calculated accuracy of the data by using parameters such as Precision, Recall and F1 Score. From the results we can conclude that when the bigram model was applied to the logistic regression, the Multilayer Perceptron (MLP) overcomes the accuracy by other algorithms as SVM, Naive Bayes and achieved an accuracy of 92.44 percent. To determine the sentiment polarity of a sentence, the suggested method use term frequency (No of Positive, Negative terms in the text) to calculate the sentiment polarity of the text. We use a logistic regression Function to predict the sentiment classification accuracy of positive and negative comments from the data.


2012 ◽  
pp. 695-703
Author(s):  
George Tzanis ◽  
Christos Berberidis ◽  
Ioannis Vlahavas

Machine learning is one of the oldest subfields of artificial intelligence and is concerned with the design and development of computational systems that can adapt themselves and learn. The most common machine learning algorithms can be either supervised or unsupervised. Supervised learning algorithms generate a function that maps inputs to desired outputs, based on a set of examples with known output (labeled examples). Unsupervised learning algorithms find patterns and relationships over a given set of inputs (unlabeled examples). Other categories of machine learning are semi-supervised learning, where an algorithm uses both labeled and unlabeled examples, and reinforcement learning, where an algorithm learns a policy of how to act given an observation of the world.


Author(s):  
George Tzanis ◽  
Christos Berberidis ◽  
Ioannis Vlahavas

Machine learning is one of the oldest subfields of artificial intelligence and is concerned with the design and development of computational systems that can adapt themselves and learn. The most common machine learning algorithms can be either supervised or unsupervised. Supervised learning algorithms generate a function that maps inputs to desired outputs, based on a set of examples with known output (labeled examples). Unsupervised learning algorithms find patterns and relationships over a given set of inputs (unlabeled examples). Other categories of machine learning are semi-supervised learning, where an algorithm uses both labeled and unlabeled examples, and reinforcement learning, where an algorithm learns a policy of how to act given an observation of the world.


2015 ◽  
Vol 28 (6) ◽  
pp. 570-600 ◽  
Author(s):  
Grant Duwe ◽  
KiDeuk Kim

Recent research has produced mixed results as to whether newer machine learning algorithms outperform older, more traditional methods such as logistic regression in predicting recidivism. In this study, we compared the performance of 12 supervised learning algorithms to predict recidivism among offenders released from Minnesota prisons. Using multiple predictive validity metrics, we assessed the performance of these algorithms across varying sample sizes, recidivism base rates, and number of predictors in the data set. The newer machine learning algorithms generally yielded better predictive validity results. LogitBoost had the best overall performance, followed by Random forests, MultiBoosting, bagged trees, and logistic model trees. Still, the gap between the best and worst algorithms was relatively modest, and none of the methods performed the best in each of the 10 scenarios we examined. The results suggest that multiple methods, including machine learning algorithms, should be considered in the development of recidivism risk assessment instruments.


Current global huge cyber protection attacks resulting from Infected Encryption ransomware structures over all international locations and businesses with millions of greenbacks lost in paying compulsion abundance. This type of malware encrypts consumer files, extracts consumer files, and charges higher ransoms to be paid for decryption of keys. An attacker could use different types of ransomware approach to steal a victim's files. Some of ransomware attacks like Scareware, Mobile ransomware, WannaCry, CryptoLocker, Zero-Day ransomware attack etc. A zero-day vulnerability is a software program security flaw this is regarded to the software seller however doesn’t have patch in vicinity to restore a flaw. Despite the fact that machine learning algorithms are already used to find encryption Ransomware. This is based on the analysis of a large number of PE file data Samples (benign software and ransomware utility) makes use of supervised machine learning algorithms for ascertain Zero-day attacks. This work was done on a Microsoft Windows operating system (the most attacked os through encryption ransomware) and estimated it. We have used four Supervised learning Algorithms, Random Forest Classifier , K-Nearest Neighbor, Support Vector Machine and Logistic Regression. Tests using machine learning algorithms evaluate almost null false positives with a 99.5% accuracy with a random forest algorithm.


Author(s):  
M. Govindarajan

Big data mining involves knowledge discovery from these large data sets. The purpose of this chapter is to provide an analysis of different machine learning algorithms available for performing big data analytics. The machine learning algorithms are categorized in three key categories, namely, supervised, unsupervised, and semi-supervised machine learning algorithm. The supervised learning algorithms are trained with a complete set of data, and thus, the supervised learning algorithms are used to predict/forecast. Example algorithms include logistic regression and the back propagation neural network. The unsupervised learning algorithms starts learning from scratch, and therefore, the unsupervised learning algorithms are used for clustering. Example algorithms include: the Apriori algorithm and K-Means. The semi-supervised learning combines both supervised and unsupervised learning algorithms. The semi-supervised algorithms are trained, and the algorithms also include non-trained learning.


Generally, the diseases are classified into communicable and non-communicable. The communicable disease is that, which can be spread easily from humans to humans while non-communicable disease does not spread. In this paper, we discuss about Parkinson's disease and its analysis using machine learning algorithms. The analysis of data is done using supervised machine learning approach. This paper concentrates and briefs about various supervised learning algorithms and its analysis.


Sign in / Sign up

Export Citation Format

Share Document