Analysis of Wireless Channel Capacity in RoF-DAS over WDM-PON System

2013 ◽  
Vol E96.C (2) ◽  
pp. 171-179 ◽  
Author(s):  
Tatsuhiko IWAKUNI ◽  
Kenji MIYAMOTO ◽  
Takeshi HIGASHINO ◽  
Katsutoshi TSUKAMOTO ◽  
Shozo KOMAKI ◽  
...  
2017 ◽  
Vol 2017 ◽  
pp. 1-10 ◽  
Author(s):  
Gustavo Anjos ◽  
Daniel Castanheira ◽  
Adão Silva ◽  
Atílio Gameiro ◽  
Marco Gomes ◽  
...  

The exploration of the physical layer characteristics of the wireless channel is currently the object of intensive research in order to develop advanced secrecy schemes that can protect information against eavesdropping attacks. Following this line of work, in this manuscript we consider a massive MIMO system and jointly design the channel precoder and security scheme. By doing that we ensure that the precoding operation does not reduce the degree of secrecy provided by the security scheme. The fundamental working principle of the proposed technique is to apply selective random rotations in the transmitted signal at the antenna level in order to achieve a compromise between legitimate and eavesdropper channel capacities. These rotations use the phase of the reciprocal wireless channel as a common random source between the transmitter and the intended receiver. To assess the security performance, the proposed joint scheme is compared with a recently proposed approach for massive MIMO systems. The results show that, with the proposed joint design, the number of antenna elements does not influence the eavesdropper channel capacity, which is proved to be equal to zero, in contrast to previous approaches.


Author(s):  
Mohammad R. Kadhum ◽  
Triantafyllos Kanakis ◽  
Ali Al-Sherbaz ◽  
Robin Crockett

Information ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 35
Author(s):  
Mohammad R. Kadhum

On the brink of sophisticated generations of mobile starting with the fifth-generation (5G) and moving on to the future mobile technologies, the necessity for developing the wireless telecommunications waveform is extremely required. The main reason beyond this is to support the future digital lifestyle that tends principally to maximize wireless channel capacity and number of connected users. In this paper, the upgraded design of the multi-carrier orthogonal generalized frequency division multiplexing (OGFDM) that aims to enlarge the number of mobile subscribers yet sustaining each one with a high transmission capacity is presented, explored, and evaluated. The expanded multi-carrier OGFDM can improve the performance of the future wireless network that targets equally the broad sharing operation (scalability) and elevated transmission rate. From a spectrum perspective, the upgraded OGFDM can manipulate the side effect of the increased number of network subscribers on the transmission bit-rate for each frequency subcarrier. This primarily can be achieved by utilizing the developed OGFDM features, like acceleration ability, filter orthogonality, interference avoidance, subcarrier scalability, and flexible bit loading. Consequently, the introduced OGFDM can supply lower latency, better BW efficiency, higher robustness, wider sharing, and more resilient bit loading than the current waveform. To highlight the main advantages of the proposed OGFDM, the system performance is compared with the initial design of the multicarrier OGFDM side by side with the 5G waveform generalized frequency division multiplexing (GFDM). The experimented results show that by moving from both the conventional OGFDM and GFDM with 4 GHz to the advanced OGFDM with 6 GHz, the gained channel capacity is improved. Because of the efficient use of Hilbert filters and improved rate of sampling acceleration, the upgraded system can gain about 3 dB and 1.5 dB increments in relative to the OGFDM and GFDM respectively. This, as a result, can maximize mainly the overall channel capacity of the enhanced OGFDM, which in turn can raise the bit-rate of each user in the mobile network. In addition, by employing the OGFDM with the dual oversampling, the achieved channel capacity in worst transmission condition is increased to around six and twelve times relative to the OGFDM and GFDM with the normal oversampling. Furthermore, applying the promoted OGFDM with the adaptive modulation comes up with maximizing the overall channel capacity up to around 1.66 dB and 3.32 dB compared to the initial OGFDM and GFDM respectively. A MATLAB simulation is applied to evaluate the transmission performance in terms of the channel capacity and the bit error rate (BER) in an electrical back-to-back wireless transmission system.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Rajendraprasad A. Pagare ◽  
Santosh Kumar ◽  
Abhilasha Mishra

AbstractIn this paper, we have presented the design and simulation of a 7-channel next-generation passive optical network (NG-PON2) network for the deployment of Fiber-to-the-X (FTTX) access network. Coexistence architecture is proposed, designed and simulated for the implementation of NG-PON2 access network. In a coexistence architecture approach, legacy PON networks like Gigabit passive optical network (GPON) PON, 10GPON, etc. and wavelength division multiplexing (WDM)-PON supporting point-to-point connectivity are designed and simulated together. A 4 W 4 WDM-PON in which each channel carrying data at 2.5 Gbps data rate is capable of supporting a throughput channel capacity of 65.5 Gbps. NG-PON2 network is designed and simulated at 187.1, 187.2, 187.3 and 187.5 to 187.8 THz wavelengths in downstream direction for different link distances from 40 to 80 km looking into the requirement of reach of access network for future cities. The network performance parameters such as bit error rate (BER), quality factor (Q-factor), signal-to-noise ratio using the Optisystem-16 simulator at above data rates and link distances. Further, channel capacity estimation is done for single-mode fiber channel coexistence NG-PON2 configuration up to 80 km supporting BER e-13 and Q-factor 7 for WDM link and BER e-12 and Q-factor 7 for a legacy network supporting almost-1 Gbps data rate to 65 users and 100 Mbps to 512 user.


Sign in / Sign up

Export Citation Format

Share Document