scholarly journals Effects of Papain-Based Gel Used For Caries Removal on Macrophages and Dental Pulp Cells

2019 ◽  
Vol 30 (5) ◽  
pp. 484-490
Author(s):  
Laura Alves Bastos ◽  
Francine Lorencetti Silva ◽  
João Pedro de Queiroz Thomé ◽  
Maya Fernanda Manfrin Arnez ◽  
Lúcia Helena Faccioli ◽  
...  

Abstract Papain-based gel is used for chemical-mechanical caries removal and present antimicrobial and anti-inflammatory activities. However, its effects on dental pulp cells and on macrophages remains largely unknown. Therefore, the aim of this study was to investigate whether the papain-based gel Papacárie Duo® acts as an immunomodulator in lipopolysaccharide (LPS)-activated macrophages and its effects on dental pulp cells . J774.1 macrophage and OD-21 dental pulp cells were stimulated with 0.5% and 5% of Papacárie Duo®, following pre-treatment or not with LPS. After 24 h, a lactate dehydrogenase assay was used to measure cytotoxicity, a tetrazolium-based colorimetric assay (MTT) was used to measure cell viability, and qRT-PCR was used to analyze relative gene expression of Ptgs2, Il10, Tnf, Mmp9, Runx2, Ibsp and Spp1. Papacárie Duo® was cytotoxic and reduced cell viability at 5% but not at 0.5% in both cultures. In macrophages, Papacárie Duo® increased the expression Il10 and LPS-induced Ptgs2, but it did not affect Tnf or Mmp9. In OD-21 cells, Papacárie Duo® inhibited Runx2 and Ibsp expression, but stimulated Spp1 expression. Papain-based gel presented a concentration dependent cytotoxicity, without affecting cell viability, for dental pulp cells and macrophages. Interestingly, the gel presented an inhibitory effect on pulp cell differentiation but modulated the activation of macrophages stimulated with LPS. We speculate that in dental pulp tissue, Papacárie Duo® would impair reparative dentinogenesis but could activate macrophages to perform their role in defense and inflammation.

2013 ◽  
Vol 46 (10) ◽  
pp. 962-970 ◽  
Author(s):  
W. Zhu ◽  
X. Zhu ◽  
G. T.-J. Huang ◽  
G. S. P. Cheung ◽  
W. L. Dissanayaka ◽  
...  

Author(s):  
Hirohito Kato ◽  
Yoichiro Taguchi ◽  
Kazuya Tominaga ◽  
Masahiro Noguchi ◽  
Kazutaka Imai ◽  
...  

Enamel matrix derivative (EMD) is used for periodontal tissue regeneration therapy, and can induce mineralization in dental pulp cells (DPCs). We designed a synthetic peptide (SP) derived from the response of cells to EMD, and investigated the effect of the SP on potentiating osteogenesis in DPCs, which have a critical role of dental pulp homeostasis. DPCs were treated with 0, 10, 100, or 1000 ng/mL SP to determine its effect on cell proliferation, cell migration, cell differentiation, and mineralization. We then examined the molecular effects of the SP, focusing on changes in the mitogen-activated protein kinases (MAPK) signaling pathway in these cells. The SP significantly promoted DPC proliferation and migration. Cultures treated with the SP also showed an enhanced expression of markers of osteogenic differentiation and mineralization. The SP also induced the activation of MAPK signaling pathway components. These results suggest that our SP could promote the dental pulp tissue repair by hard tissue formation and the mineralization through activating MAPK signaling pathway. This study provides the first evidence that SP might be a new material for dental pulp tissue treatment.


2019 ◽  
Vol 25 ◽  
pp. 10016-10028 ◽  
Author(s):  
Songbo Tian ◽  
Jie Wang ◽  
Fusheng Dong ◽  
Nan Du ◽  
Wenjing Li ◽  
...  

2018 ◽  
Vol 51 (10) ◽  
pp. 1149-1158 ◽  
Author(s):  
A. Milosavljević ◽  
Lj. DJukić ◽  
B. Toljić ◽  
J. Milašin ◽  
B. DŽeletović ◽  
...  

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Ferdiye Küçük ◽  
Sibel Yıldırım ◽  
Serap Çetiner

Abstract Background The purpose of this study was to assess the cytotoxicity of various concentrations of ozonated water (OW) on human primary dental pulp cells. Methods Human primary dental pulp cells were isolated from exfoliated primary canine teeth of an 11-year-old patient with good systemic and oral health. Afterwards, cells were divided into 6 experimental groups; four groups of OW in concentrations of 2 mg/L, 4 mg/L, 8 mg/L, and 16 mg/L, untreated control group, and cell culture without cells. Cytotoxicity was evaluated after exposure for 5-min exposure using Mosmann’s Tetrazolium Toxicity (MTT) assay at 0 h and 48 h time points. Data were analyzed using a repeated measures analysis of variance and Post-hoc tests were performed using Bonferroni correction for multiple comparisons. Results All experimental groups showed proliferation at 0 h time point. However, all groups also experienced a decrease in overtime at 48 h time point (p < 0.05). At both time points 2 mg/L OW showed the highest cell viability as well as proliferation. At 0 h time point, the increase in cell viability for all experimental groups was found statistically significant when compared to positive control group (p < 0.05). At 48 h time point, although 8 mg/L and 16 mg/L OW showed statistically significant reduction in compare to 0 h time point, 2 mg/L and 4 mg/L OW groups didn’t experience any statistically significant difference (p < 0.05). Conclusion Considering our findings, due to ozonated water's induced a higher proliferation rate of dental pulp cells, indicating their biocompatibility and a possible adjuvant on irrigating agent in regenerative endodontic procedures.


2020 ◽  
Vol 2020 ◽  
pp. 1-5
Author(s):  
Tetiana Haniastuti ◽  
Heni Susilowati ◽  
Margareta Rinastiti

The bone of yellowfin tuna (Thunnus albacares) contains high calcium and phosphor and can be synthesized into hydroxyapatite (HA). Due to its mineral content and similarity in chemical composition with human hard tissue, HA may have potency as a pulp capping material. The aim of this in vitro study was to evaluate the viability and alkaline phosphatase (ALP) activity of dental pulp cells after exposure to HA synthesized from yellowfin tuna bone (THA). Pulp cells were isolated from human-impacted third molar. To evaluate the viability of the pulp cells, the cells were cultured and exposed to various concentrations (6.25 to 200 μg/ml) of THA for 24, 48, and 72 hours. For ALP activity assay, pulp cells were cultured with odontoblastic differentiation media and exposed to THA for 7, 11, and 15 days. ALP activity was then determined using an ALP colorimetric assay kit. Results showed that the viability of the cells was more than 91% after exposure to various concentrations of THA and the cells demonstrated normal cell morphology in all observation periods. The ALP activity test revealed that groups exposed to THA for 7, 11, and 15 days showed higher ALP activity than the control groups ( p < 0.05 ). It is concluded that THA had no cytotoxic effect on pulp cells; furthermore, it enhanced proliferation as well as ALP activity of the pulp cells.


2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
Yoo-Jin Ko ◽  
Kil-Young Kwon ◽  
Kee-Yeon Kum ◽  
Woo-Cheol Lee ◽  
Seung-Ho Baek ◽  
...  

Porphyromonas gingivalisis considered with inducing pulpal inflammation and has lipopolysaccharide (LPS) as an inflammatory stimulator. GV1001 peptide has anticancer and anti-inflammation activity due to inhibiting activation of signaling molecules after penetration into the various types of cells. Therefore, this study examined inhibitory effect of GV1001 on dental pulp cells (hDPCs) stimulated byP. gingivalisLPS. The intracellular distribution of GV1001 was analyzed by confocal microscopy. Real-time RT-PCR was performed to determine the expression levels of TNF-αand IL-6 cytokines. The role of signaling by MAP kinases (ERK and p38) was explored using Western blot analysis. The effect of GV1001 peptide on hDPCs viability was measured by MTT assay. GV1001 was predominantly located in hDPC cytoplasm. The peptide inhibitedP. gingivalisLPS-induced TNF-αand IL-6 production in hDPCs without significant cytotoxicity. Furthermore, GV1001 treatment markedly inhibited the phosphorylation of MAP kinases (ERK and p38) in LPS-stimulated hDPCs. GV1001 may preventP. gingivalisLPS-induced inflammation of apical tissue. Also, these findings provide mechanistic insight into how GV1001 peptide causes anti-inflammatory actions in LPS-stimulated pulpitis without significantly affecting cell viability.


Author(s):  
Mauldina Shabrina ◽  
Dewi Fatma Suniarti ◽  
Lisa R Amir ◽  
Erik Idrus

Objective: This study aimed to analyze RGD-Chitosan from Shrimp Shells’ Scaffolds’ (RCSSS) and CSSS membrane toxicity toward human dental pulpcells.Methods: Human dental pulp cells were cultured for 5 days and then exposed to RCSSS or CSSS membranes for 24 hrs. Cell viability was determinedusing an MTT assay method.Results: Cell viability of the RCSSS group and CSSS group was higher than the cell viability of the control group. The cell viability of the RCSSSgroup 2 mg (537.39%) was significantly higher than the CSSS group 2 mg (301.74%).Conclusions: RCSSS membranes were not toxic toward human dental pulp cells and showed better effect toward human dental pulp cells comparedto CSSS membranes.


Materials ◽  
2019 ◽  
Vol 12 (17) ◽  
pp. 2750 ◽  
Author(s):  
Helder Massaro ◽  
Lígia Zambelli ◽  
Auriléia Britto ◽  
Rodolfo Vieira ◽  
Ana Ligeiro-de-Oliveira ◽  
...  

The aim of the present study was to evaluate the effect of the hydroxyethyl-methacrylate (HEMA) concentration and solvent content of dental adhesives on cell viability and cytokine (IL-1b, IL-6, IL-10, TNF-α) release by human dental pulp cells (HDPCs). HDPCs were obtained from fresh extracted human third molars. Experimental adhesives were prepared containing different concentrations of HEMA (0%, 10%, and 20%) with and without solvent (ethanol 10%). Cylindrical specimens were immersed on culture medium during 24 h to obtain the extracts. The cells were incubated with extracts (culture medium + components leached from the adhesives) of different adhesives, and cell viability and cytokine release were evaluated after 6 and 24 h of exposure. Adhesives containing HEMA promoted high cell viability reduction after 6 h of exposure; but after 24 h, the results were similar to the ones found among control group cells. These effects on cell viability were prominently increased with the addition of solvent. Although IL-1b release was not affected by exposure to eluates, other cytokines (IL-10, IL-6, TNF-α) were modulated by the different experiment conditions, directly influenced by the HEMA concentration and presence of solvent. Higher HEMA concentrations, combined with the presence of solvent, can promote significant reduction on HDPC viability, increasing the release of anti- and pro-inflammatory mediators.


Sign in / Sign up

Export Citation Format

Share Document