scholarly journals Cytotoxicity assessment of different doses of ozonated water on dental pulp cells

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Ferdiye Küçük ◽  
Sibel Yıldırım ◽  
Serap Çetiner

Abstract Background The purpose of this study was to assess the cytotoxicity of various concentrations of ozonated water (OW) on human primary dental pulp cells. Methods Human primary dental pulp cells were isolated from exfoliated primary canine teeth of an 11-year-old patient with good systemic and oral health. Afterwards, cells were divided into 6 experimental groups; four groups of OW in concentrations of 2 mg/L, 4 mg/L, 8 mg/L, and 16 mg/L, untreated control group, and cell culture without cells. Cytotoxicity was evaluated after exposure for 5-min exposure using Mosmann’s Tetrazolium Toxicity (MTT) assay at 0 h and 48 h time points. Data were analyzed using a repeated measures analysis of variance and Post-hoc tests were performed using Bonferroni correction for multiple comparisons. Results All experimental groups showed proliferation at 0 h time point. However, all groups also experienced a decrease in overtime at 48 h time point (p < 0.05). At both time points 2 mg/L OW showed the highest cell viability as well as proliferation. At 0 h time point, the increase in cell viability for all experimental groups was found statistically significant when compared to positive control group (p < 0.05). At 48 h time point, although 8 mg/L and 16 mg/L OW showed statistically significant reduction in compare to 0 h time point, 2 mg/L and 4 mg/L OW groups didn’t experience any statistically significant difference (p < 0.05). Conclusion Considering our findings, due to ozonated water's induced a higher proliferation rate of dental pulp cells, indicating their biocompatibility and a possible adjuvant on irrigating agent in regenerative endodontic procedures.

Author(s):  
Mauldina Shabrina ◽  
Dewi Fatma Suniarti ◽  
Lisa R Amir ◽  
Erik Idrus

Objective: This study aimed to analyze RGD-Chitosan from Shrimp Shells’ Scaffolds’ (RCSSS) and CSSS membrane toxicity toward human dental pulpcells.Methods: Human dental pulp cells were cultured for 5 days and then exposed to RCSSS or CSSS membranes for 24 hrs. Cell viability was determinedusing an MTT assay method.Results: Cell viability of the RCSSS group and CSSS group was higher than the cell viability of the control group. The cell viability of the RCSSSgroup 2 mg (537.39%) was significantly higher than the CSSS group 2 mg (301.74%).Conclusions: RCSSS membranes were not toxic toward human dental pulp cells and showed better effect toward human dental pulp cells comparedto CSSS membranes.


Materials ◽  
2019 ◽  
Vol 12 (17) ◽  
pp. 2750 ◽  
Author(s):  
Helder Massaro ◽  
Lígia Zambelli ◽  
Auriléia Britto ◽  
Rodolfo Vieira ◽  
Ana Ligeiro-de-Oliveira ◽  
...  

The aim of the present study was to evaluate the effect of the hydroxyethyl-methacrylate (HEMA) concentration and solvent content of dental adhesives on cell viability and cytokine (IL-1b, IL-6, IL-10, TNF-α) release by human dental pulp cells (HDPCs). HDPCs were obtained from fresh extracted human third molars. Experimental adhesives were prepared containing different concentrations of HEMA (0%, 10%, and 20%) with and without solvent (ethanol 10%). Cylindrical specimens were immersed on culture medium during 24 h to obtain the extracts. The cells were incubated with extracts (culture medium + components leached from the adhesives) of different adhesives, and cell viability and cytokine release were evaluated after 6 and 24 h of exposure. Adhesives containing HEMA promoted high cell viability reduction after 6 h of exposure; but after 24 h, the results were similar to the ones found among control group cells. These effects on cell viability were prominently increased with the addition of solvent. Although IL-1b release was not affected by exposure to eluates, other cytokines (IL-10, IL-6, TNF-α) were modulated by the different experiment conditions, directly influenced by the HEMA concentration and presence of solvent. Higher HEMA concentrations, combined with the presence of solvent, can promote significant reduction on HDPC viability, increasing the release of anti- and pro-inflammatory mediators.


2014 ◽  
Vol 2014 ◽  
pp. 1-5 ◽  
Author(s):  
Fernanda da Silveira Vargas ◽  
Diana Gabriela Soares ◽  
Ana Paula Dias Ribeiro ◽  
Josimeri Hebling ◽  
Carlos Alberto De Souza Costa

The aim of this study was to evaluate the protective effects of different concentrations of vitamin E alpha-tocopherol (α-T) isomer against the toxicity of hydrogen peroxide (H2O2) on dental pulp cells. The cells (MDPC-23) were seeded in 96-well plates for 72 hours, followed by treatment with 1, 3, 5, or 10 mMα-T for 60 minutes. They were then exposed or not to H2O2for 30 minutes. In positive and negative control groups, the cells were exposed to culture medium with or without H2O2(0.018%), respectively. Cell viability was evaluated by MTT assay (Kruskal-Wallis and Mann-Whitney tests;α=5%). Significant reduction of cell viability (58.5%) was observed in positive control compared with the negative control. Cells pretreated withα-T at 1, 3, 5, and 10 mM concentrations and exposed to H2O2had their viability decreased by 43%, 32%, 25%, and 27.5%, respectively. These values were significantly lower than those observed in the positive control, thereby showing a protective effect ofα-T against the H2O2toxicity. Overall, the vitamin Eα-T isomer protected the immortalized MDPC-23 pulp cells against the toxic effects of H2O2. The most effective cell protection was provided by 5 and 10 mM concentrations ofα-T.


2019 ◽  
Vol 3 (1) ◽  
Author(s):  
Rami Alhomrany ◽  
Chang Zhang ◽  
Laisheng Chou

 Introduction: Recent in vitro studies have shown that chitosan nanoparticles could enhance the antimicrobial activity of several dental materials. However, the biocompatibility of these nanoparticles with normal human cells is still controversial. The aim of this study was to evaluate the potential toxicity of various sizes and concentrations of chitosan nanoparticles cultured with normal human dental pulp cells. Methods: Normal human dental pulp cells were derived from human dental pulp tissues and cultured with (50-67) nm and (318-350) nm chitosan nanoparticles in concentrations: 0.2 mg/mL, 0.5 mg/mL, 1 mg/mL, and 2 mg/mL as study groups, and 0 mg/mL as a control. The cell attachment efficiency for each group was assessed at 16 hours. The proliferation rate and cell viability were evaluated at days 7 and 14. Both, attachment efficiency and proliferation rate were assessed by measuring the optical density of crystal violet stained cells. The cell viability was determined by the activity of the mitochondrial dehydrogenase enzyme. Statistical analysis was performed using One-Way ANOVA and post hoc Tukey test. Results: All concentrations of the (50-67) nm group significantly reduced cell attachment efficiency in comparison with the control (p<0.01) and with the (318-350) nm group (p<0.01). All concentrations of both groups, (50-67) nm and (318-350) nm, significantly reduced cell proliferation and cell viability compared to the control in dose-dependent and size-associated manners. (p<0.01).    Conclusion: Chitosan nanoparticles exhibit a cytotoxic effect on normal human dental pulp cells


2020 ◽  
Vol 34 (8) ◽  
pp. 1105-1113
Author(s):  
Chawan Manaspon ◽  
Lawan Boonprakong ◽  
Thantrira Porntaveetus ◽  
Thanaphum Osathanon

Surface immobilization of Jagged1 promotes odonto/osteogenic differentiation in human dental pulp cells. On the contrary, soluble Jagged1 fails to activate target gene expression of Notch signaling which is important for differentiation of human dental pulp cells. Hence, Jagged1 delivery system is indeed required for transportation of immobilized Jagged1 to promote odontogenic differentiation of human dental pulp cells in vivo. The present study described the preparation and characterization of Jagged1-bound fibrinogen-based microspheres. Water-in-oil emulsion technique was employed to prepare fibrinogen microspheres and thrombin cross-linked fibrinogen microspheres. The average size of fibrinogen microspheres and thrombin cross-linked fibrinogen microspheres was 213.9 ± 35.9 and 199.9 ± 41.9 µm, respectively. These microspheres did not alter the human dental pulp cells’ cell viability. Human dental pulp cells were able to attach and spread on these microspheres. Jagged1 was conjugated on microspheres using 1-ethyl-3-(3-dimethylamino) propyl carbodiimide/N-hydroxysuccinimide. Binding capacity of Jagged1 on both fibrinogen microspheres and thrombin cross-linked fibrinogen microspheres ranged from 25.8 ± 6.0 to 35.6 ± 9.1%. There was no significant difference in the size of microspheres between before and after Jagged1 conjugation process. In conclusion, fibrinogen microspheres and thrombin cross-linked fibrinogen microspheres could be utilized as the alternative biomaterials for Jagged1 delivery for future biomedical application.


2014 ◽  
Vol 25 (5) ◽  
pp. 367-371 ◽  
Author(s):  
Fernanda da Silveira Vargas ◽  
Diana Gabriela Soares ◽  
Fernanda Gonçalves Basso ◽  
Josimeri Hebling ◽  
Carlos Alberto de Souza Costa

This in vitro study evaluated the potential protective effect of vitamin E alpha-tocopherol (α-T) isomer against the toxicity of hydrogen peroxide (HP) applied on dental pulp cells. Odontoblast-like MDPC-23 cells were seeded on 96-well plates for 72 h, treated with different concentrations of α-T (1, 3, 5, and 10 mM) for different times (1, 4, 8, and 24 h) and then exposed or not to a 0.018% HP solution for 30 min. In positive and negative control groups, cells were exposed to HP or culture medium (DMEM containing 5% DMSO), respectively. Cell viability was assessed by the MTT assay and the absorbance numeric data, expressed as percentage values, were subjected to the statistical analysis by Kruskal-Wallis and Mann-Whitney tests (α=5%). Considering the cells in the negative control as having 100% of cell viability, all combinations of α-T concentrations and pretreatment times showed a protective effect against HP cytotoxicity. Significant reduction of cell viability (59%) was observed in the positive control compared with the negative control. The highest values of pulp cell viability were obtained after pretreatment with 1 and 3 mM α-T concentrations for 24 h followed by exposure to HP (126% and 97% of cell viability, respectively). Under the tested conditions, the most effective cell protection against the cytotoxic effects of HP was provided by the lowest concentrations of α-T (1 and 3 mM) applied for 24 h.


Materials ◽  
2020 ◽  
Vol 13 (9) ◽  
pp. 2189 ◽  
Author(s):  
James Ghilotti ◽  
José Luis Sanz ◽  
Sergio López-García ◽  
Julia Guerrero-Gironés ◽  
María P. Pecci-Lloret ◽  
...  

Biocompatibility is an essential property for any vital pulp material that may interact with the dental pulp tissues. Accordingly, this study aimed to compare the chemical composition and ultrastructural morphology of Biodentine (Septodont, Saint Maur-des-Fosses, France), ProRoot MTA (Dentsply Tulsa Dental Specialties, Johnson City, TN, USA), and Bio-C Repair (Angelus, Londrina, PR, Brazil), as well as their biological effects on human dental pulp cells. Chemical element characterization of the materials was undertaken using scanning electron microscopy and energy dispersive X-ray analysis (SEM-EDX). The cytotoxicity was assessed by analyzing the cell viability (MTT assay), cell morphology (immunofluorescence assay), and cell attachment (flow cytometry assay). The results were statistically analyzed using ANOVA and Tukey’s test (p < 0.05). EDX revealed that ProRoot MTA and Biodentine were mostly composed of calcium, carbon, and oxygen (among others), whereas Bio-C Repair evidenced a low concentration of calcium and the highest concentration of zirconium. SEM showed adequate attachment of human dental pulp cells (hDPCS) to vital pulp materials and cytoskeletal alterations were not observed in the presence of material eluates. Remarkably, the undiluted Biodentine group showed higher viability than the control group cells (without eluates) at 24 h, 48 h, and 72 h (p < 0.001). Based on the evidence derived from an in vitro cellular study, it was concluded that Bio-C Repair showed excellent cytocompatibility that was similar to Biodentine and ProRoot MTA.


Biomedicines ◽  
2020 ◽  
Vol 8 (11) ◽  
pp. 445
Author(s):  
Ok Hyung Nam ◽  
Ho Sun Lee ◽  
Jae-Hwan Kim ◽  
Yong Kwon Chae ◽  
Seoung-Jin Hong ◽  
...  

This study aimed to analyze the effects of pulp capping materials on gene expression changes in primary tooth-derived dental pulp cells using next-generation sequencing. Dental pulp cells were extracted and treated with mineral trioxide aggregate (MTA), Biodentine (BD), or TheraCal LC (TC). Cell viability assays were performed. Total RNA was extracted and analyzed through mRNA sequencing. Bioinformatic analysis of differential gene expression in dental pulp cells exposed to BD or TC versus MTA was performed. MTA, BD, and TC exposure had no significant effect on pulp cell viability (p > 0.05). Gene sets associated with inflammatory response (p = 2.94 × 10−5) and tumor necrosis factor alpha (TNF-α) signaling via the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) pathway (p = 2.94 × 10−5) were enriched in all materials. In BD-treated cells, Wnt/β-catenin signaling (p = 3.15 × 10−4) gene sets were enriched, whereas enrichment of interferon gamma (IFN-γ) response (p = 3 × 10−3) was observed in TC-treated cells. In gene plot analysis, marked increases in receptor activator of nuclear factor kappa-Β ligand (RANKL) expression were seen in TC-treated cells over time. Despite the similar cell viabilities exhibited among MTA-, BD-, and TC-treated cells, patterns of gene networks differed, suggesting that diverse functional gene differences may be associated with treatment using these materials.


2016 ◽  
Vol 38 (1) ◽  
pp. 1
Author(s):  
Segah Altuntaş ◽  
Muhammed Ali Kara ◽  
Deniz Selin Aksoy ◽  
Zehra Dilşad Çoban ◽  
Şefik Güran

Sign in / Sign up

Export Citation Format

Share Document