scholarly journals Reliability and geotechnical safety applied to deep foundations in precast concrete piles - case study

2021 ◽  
Vol 74 (1) ◽  
pp. 9-18
Author(s):  
Armando Belato Pereira ◽  
Thiago Bomjardim Porto ◽  
Romero César Gomes
Author(s):  
Seyed Saman Khedmatgozar Dolati ◽  
Armin Mehrabi

The use of piles is a common method for establishing deep foundations for bridges where there is a top layer of weak soil. Among various types of pile and installation methods, driving prestressed-precast concrete piles (PPCP) is a durable and economical option compared with the alternatives. Also, since the method employs pile segments prefabricated in precast plants and delivered to the site for installation, it conforms to the principles of Accelerated Bridge Construction (ABC) and provides a rapid alternative to other methods. However, often because of limitations on shipping and transportation, the length of precast prestressed pile segments that can be delivered to the bridge site has to be reduced. Also, headroom limitations for pile driving may limit the length of pile segments such that establishing adequate resistance may not be achieved with one segment. Therefore, splicing of pile segments has to be performed at the site to produce longer lengths. A study carried out as part of research activities at the Accelerated Bridge Construction University Transportation Center (ABC-UTC) at Florida International University has reviewed various types of available pile splices and attempted to build on the experiences gathered for ABC connections to introduce an alternative configuration for splicing PPCP segments. Accordingly, a variation of grouted bar splice was introduced and designed to provide PPCPs with a time-effective, economical, and labor-friendly method of splicing. The proposed connection is completely new for connecting PPCP segments. Because many of PPCPs are driven in a marine environment, the application of corrosion-resistant material at the splice system is also emphasized. The paper summarizes these investigations. The results of this study show that the newly developed systems can provide the required strength in bending, tension, and compression with smaller sizes and numbers of bars. It also makes the installation faster and easier compared with the current methods.


2021 ◽  
Vol 44 (2) ◽  
pp. 1-6
Author(s):  
Silvio Heleno de Abreu Vieira ◽  
Francisco R. Lopes

Dynamic formulae are a widely used expedient for the control of driven piles to ensure load capacity. These formulae have considerable limitations when used in the prediction of the load capacity on their own, but are very useful in the control of a piling when combined with other tests. This technical note presents an evaluation of the Danish Formula for 54 precast concrete piles, comparing its results with High Strain Dynamic Tests (HSDTs), Static Load Tests (SLTs) and predictions by a semi-empirical static method (Aoki & Velloso, 1975). The data used in the comparison come from three works in the city of Rio de Janeiro, Brazil. All piles were driven with free-fall hammers and in one particular work the piles were relatively short. The predictions of the Danish Formula were evaluated in relation to the pile length/diameter ratio. It was concluded that for short piles - with lengths less than 30 times the diameter - this formula indicates bearing capacities higher than the actual ones. A correction for a safe use of the Danish Formula for short piles is suggested.


1995 ◽  
Vol 33 (8) ◽  
pp. 16-25
Author(s):  
K. Oiwa ◽  
K. Tomiyama ◽  
I. Yanashima

Author(s):  
A.F. van Weele ◽  
A.J.G. Schellingerhout

2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Yanling Leng ◽  
Jinquan Zhang ◽  
Ruinian Jiang ◽  
Yangjian Xiao

Present approaches for assessing bridge redundancy are mainly based on nonlinear finite element (FE) analysis. Unfortunately, the real behavior of bridges in the nonlinear range is difficult to evaluate and a sound basis for the nonlinear FE analysis is not available. In addition, a nonlinear FE analysis is not feasible for practitioners to use. To tackle this problem, a new simplified approach based on linear FE analysis and field load testing is introduced in this paper to address the particular structural feature and topology of adjacent precast concrete box-beam bridges for the assessment of structural redundancy. The approach was first experimentally analyzed on a model bridge and then validated by a case study. The approach agrees well with the existing recognized method while reducing the computation complexity and improving the reliability. The analysis reveals that the level of redundancy of the bridge in the case study does not meet the recommended standard, indicating that the system factor recommended by the current bridge evaluation code for this bridge is inappropriate if considering the field condition. Further research on the redundancy level of this type of bridges is consequently recommended.


Sign in / Sign up

Export Citation Format

Share Document