Soils and Rocks
Latest Publications


TOTAL DOCUMENTS

183
(FIVE YEARS 132)

H-INDEX

3
(FIVE YEARS 1)

Published By Abms - Brazilian Association For Soil Mechanics And Geotechnical Engineering

1980-9743, 1980-9743

2021 ◽  
Vol 44 (4) ◽  
pp. 1-18
Author(s):  
Vitor Aguiar ◽  
Maurício Andrade ◽  
Ian Martins ◽  
Jean Rémy ◽  
Paulo Santa Maria

A geotechnical study based on characterization tests and seventy incremental loading onedimensional consolidation tests was carried out on high-quality undisturbed samples taken from Santos Harbor Channel subsoil near to Barnabé Island, where a pilot embankment was built. The characterization profiles revealed a stratigraphy following the pattern described by Massad (2009), with a 9 m-thick fluvial-lagoon-bay sediments (SFL) clay layer. The consolidation tests were performed following two loading criteria. In criterion A (series one tests), a new loading was applied whenever the strain rate (ε) reached 10-6 s-1, the highest integer power of 10 after the “end of primary” consolidation for double drained 2 cm-thick specimens. In criterion B (series two tests), the standard procedure of 24 hour-long stages was adopted. Criterion A reduced the total duration of the consolidation tests from ten to about three days. The preconsolidation (yield) stress (σ’p) and the compressibility parameters Cc and Cr obtained from “e versus σ’v (log)” compression curves of all tests are provided. Series two tests showed that the 24-hour “e versus σ’v (log)” compression curves are translated to the left of the ε = 10-6 s-1 “e versus σ’v (log)” compression curves, keeping Cr and Cc average values unchanged, but decreasing σ’p by about 8%. The SFL clay Cc/(1+e0) values obtained herein are higher than those presented by Massad (2009) due to the higher-quality samples tested in this study. It is shown that it is feasible to carry out a high-quality laboratory test program for design purposes following current standards.


2021 ◽  
Vol 44 (4) ◽  
pp. 1-10
Author(s):  
Moisés Lemos ◽  
Lucas Guimarães ◽  
André Cavalcante

Several regions in Brazil and the world suffer from the presence of collapsible soils. The development of theories for understanding the phenomenon is significant because the increase of water content is associated with several reasons (e.g., precipitation, rupture of sewage, and water systems). Although some theories explain the behavior of various types of soils, they fail to explain collapsible and structured soils. In this research, an alternative interpretation of the consolidation theory is verified and calibrated for collapsible soil. The alternative model was applied to experimental data from a latosol from southeastern Brazil, and comparisons with the classical theory showed a difference in the saturated hydraulic conductivity of around 100 times. The observation showed promising results compared with the saturated hydraulic conductivity of the field (Guelph Permeameter). Furthermore, consolidation tests verified the collapse potential, the variation of consolidation coefficient and saturated hydraulic conductivity, and the total settlement prevision due to the presence of bleach and washing powder.


2021 ◽  
Vol 44 (4) ◽  
pp. 1-14
Author(s):  
Catarina Ramos ◽  
António Fonseca ◽  
Cristiana Ferreira

Over the years, methods to assess cyclic liquefaction potential based on piezocone penetration tests (CPTu) have been developed. This paper presents a comparative study between three CPTu-based methodologies, mainly in terms of the normalization procedures of overburden stresses, equivalent clean sand resistance, and magnitude scaling factor (MSF). Four CPTu profiles from a pilot site in southwest Portugal are thoroughly analysed with different methods, in terms of factor of safety against liquefaction, the Liquefaction Potential Index (LPI), and the Liquefaction Severity Number (LSN). The site presents very heterogeneous soil profiles, composed of alluvial deposits. Due to the presence of significant sand-silt–clay interbedded layers, the influence of transition zones and the use of different soil behaviour type index (Ic) cut-off values were also considered. From these analyses, a set of recommendations is presented for CPTu-based liquefaction assessment. Based on the extensive database of CPTu results in the pilot site area, a new classification relating LPI and LSN is proposed to assess liquefaction severity and damage.


2021 ◽  
Vol 44 (4) ◽  
pp. 1-12
Author(s):  
Nima Alkhorshid ◽  
Gregório Araújo ◽  
Ennio Palmeira

The use of granular column is one of the ground improvement methods used for soft soils. This method improves the foundation soils mechanical properties by displacing the soft soil with the compacted granular columns. The columns have high permeability that can accelerate the excess pore water pressure produced in soft soils and increase the undrained shear strength. When it comes to very soft soils, the use of granular columns is not of interest since these soils present no significant confinement to the columns. Here comes the encased columns that receive the confinement from the encasement materials. In this study, the influence of the column installation method on the surrounding soil and the encasement effect on the granular column performance were investigated using numerical analyses and experimental tests. The results show that numerical simulations can reasonably predict the behavior of both the encased column and the surrounding soil.


2021 ◽  
Vol 44 (4) ◽  
pp. 1-12
Author(s):  
Bruno Oliveira ◽  
Newton Souza ◽  
Rafael Silva ◽  
Eleudo Silva Junior

Geotechnical data is often produced and managed by several producers in isolation, in their own formats and standards, which aim to meet the unique needs of specific users, because there is not a defined geospatial geotechnical data storage standard. This article presents the physical implementation of a three-dimensional geotechnical database, based on a data model generated using the Object Modeling Technique for Geographic Applications, composed of information produced by the academy and various administrative institutions of the Federal District Government. More than four thousand quantitative e qualitative geotechnical investigations are available in this structured database that can be accessed by anyone with some geographic information system knowledge using QGIS. Considering that the compiled information was stored by their producers in distinct formats and most of them in a non-digital and without locational information, this work reinforces the need to adoption a standardization of geospatial geotechnical data storage on a unified basis compatible with the National Spatial Data Bank to disseminate this information.


2021 ◽  
Vol 44 (4) ◽  
pp. 1-14
Author(s):  
Gomes Yago ◽  
Filipe Verri ◽  
Dimas Ribeiro

Geotechnical engineers frequently rely on semi-empirical methods like Décourt-Quaresma and Meyehof’s to estimate the bearing capacity of piles. This paper proposes alternatives to these methods, presenting an approach using machine learning models for predicting the bearing capacity of precast concrete piles. It uses data samples including 165 load tests, each one accompanied with a SPT sounding. This study proposes two types of analysis using two separated datasets, one based on the Décourt-Quaresma method and the other based on the Meyerhof method. Six machine learning algorithms of distinct biases are trained and tested with a leave-one-out cross validation procedure and the models’ predictive performance is assessed through two metrics: root mean squared error (RMSE) and coefficient of determination (R2). The best performing technique was random forest (RF) using Décourt-Quaresma dataset, with an RMSE of 642.38. All other machine learning techniques obtained a RMSE below 710, overcoming Meyerhof’s and Décourt-Quaresma’s semi-empirical methods, which both obtained RMSE values close to 900. This study proposes 95% and 90% confidence intervals for the best technique employing a graphical interpretation, so that geotechnical engineers can choose which level of safety they wish to work with. Finally, the study presents a case study showing that the best performing models achieve a reasonable accuracy, surpassing the semi-empirical methods in two of the three piles considered. The representativity of the new examples within the used datasets explain the accuracy of the techniques.


2021 ◽  
Vol 44 (4) ◽  
pp. 1-14
Author(s):  
Paula Pascoal ◽  
Amanda Sagrilo ◽  
Magnos Baroni ◽  
Luciano Specht ◽  
Deividi Pereira

This article presents the study of the resilient behavior of three soil horizons from a deposit of lateritic soil employed in a pavement structure in Rio Grande do Sul, Brazil. The use of lateritic soils in pavement layers is a common practice in Brazil and due to its peculiarities, its behavior must be investigated. The methodology consisted of physical and chemical characterization and resilient modulus determination. Samples from the three horizons, compacted at standard, intermediate and modified energy, were analyzed. In addition, undisturbed samples extracted from the interior and top layer of the embankment were submitted to repeated load triaxial tests for resilient modulus determination. The results indicated that the soil exhibit good behavior for pavement subgrade applications, perhaps as subbase or base course layers. The compound and universal models yielded the best correlation coefficients. Furthermore, the results showed that as the compaction energy increased, the resilient modulus also increased, as long as they are within the optimum water content and compaction degree limit. However, when subjected to immersion in water for four days, the resilient behavior decreased about 73% in relation to unsaturated samples.


2021 ◽  
Vol 44 (4) ◽  
pp. 1-11
Author(s):  
Carla Pontes ◽  
Roberta Boszczowski ◽  
Leonardo Ercolin Filho

This work presents a geological-geotechnical risk map of gravitational mass movements and a susceptibility map to shallow translational slides to Vila Nova community, located in the municipality of Colombo, Brazil. The first map was created through a qualitative mapping methodology and the second one was elaborated using a deterministic method of slope stability. An aerial photogrammetric survey with UAV technology was performed, as well as field reconnaissance, laboratory testing, and geoprocessing techniques. Seven slope failures were identified as well as a range of other evidences of instability associated with the predisposition of the terrain to erosive and gravitational movements linked to human intervention without urban planning and engineering techniques. Moreover, the qualitative and quantitative analyses pointed out that 13% to 9% of the study area, respectively, are in a very high-risk condition for landslides. Thus, the resulting cartographic products are presented as an important technical contribution for landslide risk management as well as land use planning for reducing the geotechnical problems faced on site.


2021 ◽  
Vol 44 (4) ◽  
pp. 1-14
Author(s):  
Lucas Carvalho ◽  
Dimas Ribeiro

The most popular methods for soil classification from cone penetration test (CPT) data are based on examining two-dimensional charts. In the last years, several authors have dedicated efforts on replicating and discussing these methods using machine learning techniques. Nonetheless, most of them apply few techniques, include only one dataset and do not explore more than three input features. This work circumvents these issues by: (i) comparing five different machine learning techniques, which are also combined in an ensemble; (ii) using three distinct CPT datasets, one composed of 111 soundings from different countries, one composed of 38 soundings with information of soil age and the third composed of 64 soundings taken from the city of São Paulo, Brazil; and (iii) testing combinations of five input features. Results show that, in most cases, the ensemble of multiple models achieves better predictive performance than any technique isolated. Accuracies close to the maximum were obtained in some cases without the need of pore pressure information, which is costly to measure in geotechnical practice.


2021 ◽  
Vol 44 (4) ◽  
pp. 1-23
Author(s):  
Arumugam Balasubramaniam

In this lecture the interpretations of fully instrumented tests embankments and their role in the development of appropriate ground improvement techniques for highways, motorways and airfields on soft clay deposits is illustrated through well documented case studies in Bangkok, Thailand and Muar Flat Site in Kuala Lumpur. For the Bangkok Plain and with sand backfills the performance of embankments with different schemes of vertical drains was evaluated over a period of 25 years. Aspects such as recharging effects due to the drains, inadequate measures in maintaining vacuum during vacuum applications and possible hydraulic connections with large diameter drains are discussed. For the Muar test embankments, the role of fill strength in residual soil embankment and the field deformation analysis in separating consolidation settlement from immediate settlement and creep settlements is presented. Novel interpretations of settlement from pore pressure dissipations, secondary settlement from field measurements and decay of lateral deformation rate with time were also made.


Sign in / Sign up

Export Citation Format

Share Document