Alternative Systems and Materials for Splicing Prestressed-Precast Concrete Piles

Author(s):  
Seyed Saman Khedmatgozar Dolati ◽  
Armin Mehrabi

The use of piles is a common method for establishing deep foundations for bridges where there is a top layer of weak soil. Among various types of pile and installation methods, driving prestressed-precast concrete piles (PPCP) is a durable and economical option compared with the alternatives. Also, since the method employs pile segments prefabricated in precast plants and delivered to the site for installation, it conforms to the principles of Accelerated Bridge Construction (ABC) and provides a rapid alternative to other methods. However, often because of limitations on shipping and transportation, the length of precast prestressed pile segments that can be delivered to the bridge site has to be reduced. Also, headroom limitations for pile driving may limit the length of pile segments such that establishing adequate resistance may not be achieved with one segment. Therefore, splicing of pile segments has to be performed at the site to produce longer lengths. A study carried out as part of research activities at the Accelerated Bridge Construction University Transportation Center (ABC-UTC) at Florida International University has reviewed various types of available pile splices and attempted to build on the experiences gathered for ABC connections to introduce an alternative configuration for splicing PPCP segments. Accordingly, a variation of grouted bar splice was introduced and designed to provide PPCPs with a time-effective, economical, and labor-friendly method of splicing. The proposed connection is completely new for connecting PPCP segments. Because many of PPCPs are driven in a marine environment, the application of corrosion-resistant material at the splice system is also emphasized. The paper summarizes these investigations. The results of this study show that the newly developed systems can provide the required strength in bending, tension, and compression with smaller sizes and numbers of bars. It also makes the installation faster and easier compared with the current methods.

2021 ◽  
Vol 74 (1) ◽  
pp. 9-18
Author(s):  
Armando Belato Pereira ◽  
Thiago Bomjardim Porto ◽  
Romero César Gomes

2016 ◽  
Vol 24 (4) ◽  
pp. 251-260
Author(s):  
Zhongguo John Ma ◽  
Yulin Zhan ◽  
Lin Xiao ◽  
Lungui Li ◽  
Weiwei Lu

Author(s):  
Mohamadreza Shafieifar ◽  
Mahsa Farzad ◽  
Atorod Azizinamini

Accelerated bridge construction (ABC) is a paradigm change in delivery of bridges. ABC minimizes the traffic interruption, enhances safety to public and workers by significantly reducing on-site construction activities, and results in longer-lasting bridges. The use of precast elements is gaining attention owing to inherent benefits of accelerated construction. Designing an economical connection is one of the main concerns for these structures. New improved materials such as ultra-high-performance concrete (UHPC) with superior characteristics can provide solutions for joining precast concrete elements. In this paper two types of column to cap beam connection using UHPC are proposed for seismic and non-seismic regions. Among the merits of the proposed details, large tolerances in construction and simplicity of the connection can be highlighted which facilitates and accelerates the on-site construction time. The experimental program was carried out to evaluate the performance and structural behavior of the proposed connections. Four specimens were subjected to constant axial compressive loads and cyclic lateral loading. Results of the experiment showed that the displacement ductility of the specimens, incorporating suggested details, demonstrated adequate levels of displacement ductility. More importantly, the proposed connections prevented the damage into capacity protected element—in this case the cap beam. Analytical and nonlinear finite element analysis on the specimens was carried out to better comprehend the behavior of the proposed connections.


2020 ◽  
Vol 10 (4) ◽  
pp. 1457 ◽  
Author(s):  
Saman Farhangdoust ◽  
Armin Mehrabi

In accelerated bridge construction (ABC), prefabricated bridge deck elements are merged using “closure joints.” Because of the cast-in-place nature of closure joints that are expected to go into service rapidly and problems observed for some types of closure joints, there have been some concerns about their long-term durability. This has necessitated the need for monitoring the condition of ABC closure joints using non-destructive testing (NDT) methods. Closure joints contain unique features and details that sets them apart from conventional deck panels. This requires a special treatment of closure joints when it comes to selecting the appropriate NDT technique for their health monitoring. A clear guideline for selecting an applicable NDT method for various types of closure joints has not been developed yet. For this purpose, an investigation was carried out in the Accelerated Bridge Construction University Transportation Center (ABC-UTC) at Florida International University. This paper summarizes the result of this investigation. It includes reviews of all relevant NDT methods for applicability to ABC closure joints and efforts for categorizing closure joints according to joint features that affect the use of NDT. Since the applicability of NDT methods heavily depend on the type of expected anomaly to be detected and its root causes, all potential defects and types of damage were identified and investigated using a damage sequence tree (DST). Consequently, damage etiology for ABC closure joints were established using fault tree analysis (FTA). Finally, a quantitative statistical survey was used to substantiate the selection of the NDT methods that were most applicable to the health monitoring of ABC bridges containing closure joints. The results presented in this paper can be used by bridge owners and consultants as an effective and practical guide for the selection of NDT methods for monitoring the health of ABC closure joints.


2021 ◽  
Vol 17 (3-4) ◽  
pp. 111-119
Author(s):  
Jianwei Huang

Using precast concrete elements in bridge structures has emerged as an economic and durable solution to enhance the sustainability of bridges. The northeast extreme tee (NEXT) beams were recently developed for accelerated bridge construction by the Precast/Prestressed Concrete Institute (PCI). To date, several studies on the live load distribution factor (LLDF) for moment in NEXT F beam bridges have been reported. However, the LLDFs for shear in NEXT F beam bridges are still unclear. In this paper, the lateral distributions of live load shear in NEXT F beam bridges were examined through a comprehensive parametric study. The parameters covered in this study included bridge section, span length, beam section, number of beams, and number of lanes loaded. A validated finite element (FE) modeling technique was employed to analyze the shear behavior of NEXT F beam bridges under the AASHTO HL-93 loading and to determine the LLDFs for shear in NEXT beam bridges. A method for computing the FE-LLDF for shear was proposed for NEXT beam bridges. Results from this study showed that the FE-LLDFs have a similar trend as the AASHTO LFRD-LLDFs. However, it was observed that some LRFD-LLDFs are lower than the FE-LLDFs by up to 14.1%, which implied using the LRFD-LLDFs for shear could result in an unsafe shear design for NEXT beam bridges. It is recommended that a factor of 1.2 be applied to the LRFD-LLDF for shear in NEXT F beam bridges for structural safety and design simplicity.


Sign in / Sign up

Export Citation Format

Share Document