scholarly journals Influence of remaining coronal thickness and height on biomechanical behavior of endodontically treated teeth: survival rates, load to fracture and finite element analysis

2018 ◽  
Vol 26 (0) ◽  
Author(s):  
Gislene Corrêa ◽  
Lucas P Brondani ◽  
Vinícius F. Wandscher ◽  
Gabriel K. R. Pereira ◽  
Luiz F. Valandro ◽  
...  
Author(s):  
Cédric P Laurent ◽  
Béatrice Böhme ◽  
Jolanthe Verwaerde ◽  
Luc Papeleux ◽  
Jean-Philippe Ponthot ◽  
...  

Osteosynthesis for canine long bones is a complex process requiring knowledge of biology, surgical techniques and (bio)mechanical principles. Subject-specific finite element analysis constitutes a promising tool to evaluate the effect of surgical intervention on the global properties of a bone–implant construct, but suffers from a lack of validation. In this study, the biomechanical behavior of 10 canine humeri was compared before and after creation of a 10 mm bone defect stabilized with an eight-hole locking compression plate (Synthes®) and two locking screws on each fragment. The response under compression of both intact and plated samples was measured experimentally and reproduced with a finite element model. The experimental stiffness ratio between plated and intact bone was equal to 0.39 ± 0.06. A subject-specific finite element analysis including density-dependent elasto-plastic material properties for canine bone and automatic generation of orthopedic implants was then conducted to recover these experimental results. The stiffness of intact and plated samples could be predicted, with no significant differences with experimental data. The simulated stiffness ratio between plated and intact canine bone was equal to 0.43 ± 0.03. This study constitutes a first step toward the building of a virtual database of pre-computed cases, aiming at helping the veterinary surgeons to make decisions regarding the most suited orthopedic solution for a given dog and a given fracture.


2015 ◽  
Vol 114 (3) ◽  
pp. 383-389 ◽  
Author(s):  
Érica Alves Gomes ◽  
Danilo Bagini Gueleri ◽  
Silvio Rocha Corrêa da Silva ◽  
Ricardo Faria Ribeiro ◽  
Yara T.C. Silva-Sousa

2019 ◽  
pp. 0000-0000 ◽  
Author(s):  
Karina Albino Lencioni ◽  
Pedro Yoshito Noritomi ◽  
Ana Paula Macedo ◽  
Ricardo Faria Ribeiro ◽  
Rossana Pereira Almeida

This study analyzed the biomechanical behavior of rigid and non-rigid tooth-implant supported fixed partial dentures. Different implants were used in order to observe the load distribution over teeth, implants, and adjacent bone using three-dimensional finite element analysis. A simulation of tooth loss of the first and second right molars was created with an implant placed in the second right molar and a prepared tooth with simulated periodontal ligament (PDL) in the second right premolar. Configurations of two types of implants and their respective abutments, i.e., external hexagon (EX) and Morse taper (MT), were transformed into a 3D format. Metal-ceramic fixed partial dentures were constructed with rigid and non-rigid connections. Mesh generation and data processing were performed on the 3D FEA results. Static loading of 50 N (premolar) and 100 N (implant) were applied. When an EX implant was used, with a rigid or non-rigid connection, there was intrusion of the tooth in the distal direction with flexion of the periodontal ligament. Tooth intrusion did not occur when the MT implant was used independent of a rigid or non-rigid connection. The rigid or non-rigid connection resulted in a higher incidence of compressive forces at the cortical bone and stress in the abutment/pontic area, regardless of whether EX or MT implants were used. MT implants have a superior biomechanical performance in tooth-implant supported fixed partial dentures. This prevents the intrusion of the tooth independent of the connection. Both types of implants that were studied caused a greater tendency of compressive forces at the crestal area.


Sign in / Sign up

Export Citation Format

Share Document