scholarly journals Fluoride release and uptake in enhanced bioactivity glass ionomer cement (“glass carbomer™”) compared with conventional and resin-modified glass ionomer cements

Author(s):  
Ammar M. H. R. HASAN ◽  
Sharanbir K. SIDHU ◽  
John W. NICHOLSON
2004 ◽  
Vol 12 (1) ◽  
pp. 12-17 ◽  
Author(s):  
Linda Wang ◽  
Marília Afonso Rabelo Buzalaf ◽  
Maria Teresa Atta

A dhesive systems associated to resin-modified glass ionomer cements are employed for the achievement of a higher bond strength to dentin. Despite this benefit, other properties should not be damaged. This study aimed at evaluating the short-time fluoride release of a resin-modified glass ionomer cement coated with two one-bottle adhesive systems in a pH cycling system. Four combinations were investigated: G1: Vitremer (V); G2: Vitremer + Primer (VP); G3: Vitremer + Single Bond (VSB) and G4: Vitremer + Prime & Bond 2.1 (VPB). SB is a fluoride-free and PB is a fluoride-containing system. After preparation of the Vitremer specimens, two coats of the selected adhesive system were carefully applied and light-cured. Specimens were immersed in demineralizing solution for 6 hours followed by immersion in remineralizing solution for 18 hours, totalizing the 15-day cycle. All groups released fluoride in a similar pattern, with a greater release in the beginning and decreasing with time. VP showed the greatest fluoride release, followed by V, with no statistical difference. VSB and VPB released less fluoride compared to V and VP, with statistical difference. Regardless the one-bottle adhesive system, application of coating decreased the fluoride release from the resin-modified glass ionomer cements. This suggests that this combination would reduce the beneficial effect of the restorative material to the walls around the restoration.


2004 ◽  
Vol 5 (4) ◽  
pp. 42-49 ◽  
Author(s):  
Yusuf Ziya Bayindir ◽  
Mehmet Yildiz

Abstract In this study the top and bottom surface hardness of two polyacid-modified composite resins (PMCRs), one resin-modified glass ionomer cement (RMGIC), and one composite resin were evaluated. The affect of water storage on their hardness was also investigated. The study was conducted using four different groups, each having five specimens obtained from fiberglass die molds with a diameter of 5 mm and a height of 2 mm. Measurements were made on the top and bottom surface of each specimen and recorded after 24 hours and again at 60 days. All tested materials showed different hardness values, and the values of top surfaces of the specimens were found to be higher than the bottom surface in all test groups. There was no statistical difference in the Vickers hardness (HV) values when the test specimens were kept in water storage. In conclusion Hytac displayed microhardness values higher than Vitremer and Dyract. We found the order of HV values to be Surfil > Hytac > Dyract > Vitremer, respectively. Vitremer presented the lowest microhardness level and Surfil the highest. Citation Bayindir YZ, Yildiz M. Surface Hardness Properties of Resin-Modified Glass Ionomer Cements and Polyacid-Modified Composite Resins. J Contemp Dent Pract 2004 November;(5)4:042-049.


1998 ◽  
Vol 2 (3) ◽  
pp. 143-146 ◽  
Author(s):  
W. Geurtsen ◽  
P. Bubeck ◽  
G. Leyhausen ◽  
F. Garcia-Godoy

2007 ◽  
Vol 21 (3) ◽  
pp. 204-208 ◽  
Author(s):  
André Mallmann ◽  
Jane Clei Oliveira Ataíde ◽  
Rosa Amoedo ◽  
Paulo Vicente Rocha ◽  
Letícia Borges Jacques

The purpose of this study was to evaluate the compressive strength of two glass ionomer cements, a conventional one (Vitro Fil® - DFL) and a resin-modified material (Vitro Fil LC® - DFL), using two test specimen dimensions: One with 6 mm in height and 4 mm in diameter and the other with 12 mm in height and 6 mm in diameter, according to the ISO 7489:1986 specification and the ANSI/ADA Specification No. 66 for Dental Glass Ionomer Cement, respectively. Ten specimens were fabricated with each material and for each size, in a total of 40 specimens. They were stored in distilled water for 24 hours and then subjected to a compressive strength test in a universal testing machine (EMIC), at a crosshead speed of 0.5 mm/min. The data were statistically analyzed using the Kruskal-Wallis test (5%). Mean compressive strength values (MPa) were: 54.00 ± 6.6 and 105.10 ± 17.3 for the 12 mm x 6 mm sample using Vitro Fil and Vitro Fil LC, respectively, and 46.00 ± 3.8 and 91.10 ± 8.2 for the 6 mm x 4 mm sample using Vitro Fil and Vitro Fil LC, respectively. The resin-modified glass ionomer cement obtained the best results, irrespective of specimen dimensions. For both glass ionomer materials, the 12 mm x 6 mm matrix led to higher compressive strength results than the 6 mm x 4 mm matrix. A higher variability in results was observed when the glass ionomer cements were used in the larger matrices.


Author(s):  
Farahnaz Sharafeddin ◽  
Somaye Bahrani

Objectives: Glass ionomer cements (GICs) are among the most popular dental restorative materials, but their use is limited due to their clinical disadvantages. Many efforts have been made to improve the properties of these materials by adding various fillers. Incorporation of hydroxyapatite (HA) into the GICs is considered to improve the physical properties of restorations, and may prevent treatment failure. This study aimed to evaluate the surface roughness (Ra) of a conventional glass ionomer cement (CGIC), a resin-modified glass ionomer (RMGI) and a Zirconomer with and without micro-hydroxyapatite (µHA). Materials and Methods: This experimental study was conducted on 6 groups (n=10) including CGIC, CGIC + µHA, RMGI, RMGI + µHA, Zirconomer, and Zirconomer + µHA. A total of 60 disc-shaped samples (6 mm × 2 mm) were prepared in plastic molds and were stored in distilled water for 24 h. After polishing of the specimens, their Ra was measured by a profilometer in micrometers (µm). The data were analyzed using two and one-way ANOVA, Tukey's HSD test, and independent t-test. Results: Incorporation of µHA resulted in statistically significant differences in Ra between the study groups (P<0.05). Following the incorporation of µHA, the Ra significantly decreased in CGIC (P=0.013) and Zirconomer (P=0.003). However, addition of µHA to RMGI resulted in a significant increase in its Ra (P<0.001). Conclusion: Addition of µHA decreased the Ra of Zirconomer and CGIC, and increased the surface roughness of RMGI samples.


2012 ◽  
Vol 37 (2) ◽  
pp. 183-187 ◽  
Author(s):  
Y Yamada ◽  
Y Masuda ◽  
Y Kimura ◽  
M Hossain ◽  
A Manabe ◽  
...  

Objective: The purpose of this study was to investigate the adhesion of glass ionomer cements to dentin and the effect of pretreatment using Carisolv. Study design: Forty extracted permanent teeth with caries were used for this study. All lesions were removed using the Carisolv system and teeth were divided into eight groups. Groups 1 to 4 were filled with three types of conventional glass ionomer cements and a resin modified glass ionomer cement. Group 8 was restored with composite resin. In the remaining three groups (Groups 5 to 7), several pretreatment procedures, including EDTA and dentin primer application and a combination of these, were performed before restoring with resin modified glass ionomer cement. All restorations were thermocycled, and microleakage tests were performed on all teeth. Results: There were no statistical differences among Groups 1, 2 and 3 or between Groups 4 and 8. However, Groups 1 to 3 had higher microleakage levels than Groups 4 and 8. Groups 5 to 7 showed similar leakage levels as Group 4. Conclusion: Pretreatment with EDTA or dentin primer did not improve bonding ability. Combination of caries removal using Carisolv and a resin modified glass ionomer cement restoration without pretreatment seems to be an acceptable method for caries treatment.


2003 ◽  
Vol 82 (10) ◽  
pp. 829-832 ◽  
Author(s):  
C.M. Carey ◽  
M. Spencer ◽  
R.J. Gove ◽  
F.C. Eichmiller

Fluoride is added to many dental restorative materials, including glass-ionomer cements, for the specific purpose of leaching fluoride into the surrounding tissues to provide secondary caries inhibition. During the caries process, an acidic environment attacks the dental tissues as well as the glass-ionomer cement. We hypothesized that pH significantly affects the rate of release of fluoride from the glass-ionomer cement. A continuous-flow fluoride-measuring system that monitors the amount of fluoride released over time was used to determine the release of fluoride from a resin-modified glass-ionomer cement (KetacFil®). The results show that the release rate began with a fast burst of fluoride which quickly diminished to low levels in 3 days. Under neutral pH conditions, the rate of fluoride release at 72 hrs was significantly slower than at pH 4.


2011 ◽  
Vol 22 (4) ◽  
pp. 275-279 ◽  
Author(s):  
Marco Aurélio Benini Paschoal ◽  
Carla Vecchione Gurgel ◽  
Daniela Rios ◽  
Ana Carolina Magalhães ◽  
Marília Afonso Rabelo Buzalaf ◽  
...  

The present study aimed to compare the fluoride (F-) release pattern of a nanofilled resin-modified glass ionomer cement (GIC) (Ketac N100 - KN) with available GICs used in dental practice (resin-modified GIC - Vitremer - V; conventional GIC - Ketac Molar - KM) and a nanofilled resin composite (Filtek Supreme - RC). Discs of each material (n=6) were placed into 4 mL of deionized water in sealed polyethylene vials and shaken, for 15 days. F- release (μg F-/cm²) was measured each day using a fluoride-ion specific electrode. Cumulative F- release means were statistically analyzed by linear regression analysis. In order to analyze the differences among materials and the influence of time in the daily F- release, 2-way ANOVA test was performed (α=0.05). The linear fits between the cumulative F- release profiles of RC and KM and time were weak. KN and V presented a strong relationship between cumulative F- release and time. There were significant differences between the daily F- release overtime up to the third day only for GICs materials. The daily F- release means for RC were similar overtime. The results indicate that the F- release profile of the nanofilled resin-modified GIC is comparable to the resin-modified GIC.


2009 ◽  
Vol 34 (1) ◽  
pp. 53-58 ◽  
Author(s):  
Maha Daou ◽  
Bruno Tavernier ◽  
Jean-Marc Meyer

A variety of alternatives to amalgam are now available for use in Class I and Class II restorations in primary teeth, including glass ionomer cements, compomers and resin modified glass ionomer cements(RMGIC). Objectives: This study evaluated the two-year clinical performance of three restorative dental materials: A resin modified glass ionomer cement (Fuji IILC), a compomer (Dyract AP) and a high viscosity glass ionomer cement (Fuji IX), in primary molars of pediatric patients with high caries risk activity and compared these results to those reported for amalgam restorations. Study design: One hundred and forty nine Class I and Class II cavities in 45 patients aged 6 to 8 years were restored with compomer, glass ionomer cements and amalgam. Restorations were evaluated according to modified Ryge criteria by two examiners at baseline, and after 6, 12, 18 and 24 months of oral function. The data was submitted to statistical analysis (binomial and hyper geometric tests, p&lt;0.05). Results: Two-year recall rate was 62.42%. Class I performed better than class II restorations. The difference in marginal discoloration between compomer and amalgam restorations was statistically significant (p=0.014). No other significant differences were found between GIC, compomer and amalgam restorations. The clinical performance of the three restorative materials compared to amalgam in Class I and Class II cavities at two-year recall was acceptable.Conclusions: The results, even in a population with high caries risk activity, suggest that these materials are suitable alternatives to amalgam in Class I and Class II restorations in primary teeth.


Sign in / Sign up

Export Citation Format

Share Document